(2012•陜西三模)已知f(x)=excosx,則此函數(shù)圖象在點(1,f(1))處的切線的傾斜角為(  )
分析:先求函數(shù)f(x)=excosx的導數(shù),因為函數(shù)圖象在點(1,f(1))處的切線的斜率為函數(shù)在x=1處的導數(shù),就可求出切線的斜率,再根據(jù)切線的斜率是傾斜角的正切值,就可根據(jù)斜率的正負判斷傾斜角是銳角還是鈍角.
解答:解:∵f′(x)=excosx-exsinx,∴f′(1)=e(cos1-sin1)
∴函數(shù)圖象在點(1,f(1))處的切線的斜率為e(cos1-sin1)
∵e(cos1-sin1)<0,∴函數(shù)圖象在點(1,f(1))處的切線的傾斜角為鈍角
故選D
點評:本題考查了導數(shù)的運算及導數(shù)的幾何意義,以及直線的傾斜角與斜率的關(guān)系,屬于綜合題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•陜西三模)已知點A(-1,0)、B(1,0),P(x0,y0)是直線y=x+2上任意一點,以A、B為焦點的橢圓過點P.記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西三模)已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),則實數(shù)b的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西三模)袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2 的小球n個,已知從袋子隨機抽取1個小球,取到標號為2的小球的概率是
12

(Ⅰ)求n的值;
(Ⅱ)從袋子中不放回地隨機抽取2個球,記第一次取出的小球標號為a,第二次取出的小球標號為b.
①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西三模)已知x與y之間的幾組數(shù)據(jù)如下表:
X 0 1 2 3
y 1 3 5 7
則y與x的線性回歸方程
y
=bx+a
必過( 。

查看答案和解析>>

同步練習冊答案