年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
4 |
7
| ||
10 |
π |
6 |
π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年杭州市質(zhì)檢一文) (16分) 設(shè)函數(shù), 其中, 將的最小值記為.
(1)求的表達(dá)式;
(2)討論在區(qū)間[-1,1]內(nèi)的單調(diào)性;
(3) 若當(dāng)時(shí),恒成立,其中為正數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)試求橢圓的方程;
(2)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形DMEN面積的最大值和最小值.
(文)已知函數(shù)f(x)=x3+bx2+cx,b、c∈R,且函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增,在區(qū)間(1,3)上單調(diào)遞減.
(1)若b=-2,求c的值;
(2)求證:c≥3;
(3)設(shè)函數(shù)g(x)=f′(x),當(dāng)x∈[-1,3]時(shí),g(x)的最小值是-1,求b、c的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com