(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點A,B.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)是否存在實數(shù)k,使得以線段AB為直徑的圓經過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.
(Ⅰ)-2<k< ;
(Ⅱ)k=-時,使得以線段AB為直徑的圓經過雙曲線C的右焦點.
解析試題分析:(Ⅰ)由
據題意: 解得-2<k< ……………5分
(Ⅱ)設A,B兩點的坐標分別為(x1,y1),(x2,y2), 則由①式得:
假設存在實數(shù)k,使得以線段AB為直徑的圓過雙曲線C的右焦點F(,0),則FAFB.
即·=0,(x1-)(x2-)+y1y2=0,
(x1-)(x2-)+(kx1+1)(kx2+1)=0,
(1+k2)x1 x2+(k-)(x1+ x2)+=0,
∴(1+k2)+(k-)·+=0,
∴5k2+2-6=0
∴k=-或k=,(-2,-)(舍去)
∴k=-時,使得以線段AB為直徑的圓經過雙曲線C的右焦點.…………………12分
考點:本題主要考查直線與雙曲線的位置關系。
點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理。存在性問題,往往從假設存在出發(fā),運用題中條件探尋得到存在的是否條件具備。
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)已知橢圓的離心率為,為橢圓的右焦點,兩點在橢圓上,且,定點。
(1)若時,有,求橢圓的方程;
(2)在條件(1)所確定的橢圓下,當動直線斜率為k,且設時,試求關于S的函數(shù)表達式f(s)的最大值,以及此時兩點所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線及點,直線的斜率為1且不過點P,與拋物線交于A,B兩點。
(1) 求直線在軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C,D,證明:AD、BC交于定點。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
.已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點,雙曲線的實軸為,為雙曲線上一點(不同于),直線,分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某海域有、兩個島嶼,島在島正東4海里處。經多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標系。
(1)求曲線的標準方程;(6分)
(2)某日,研究人員在、兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),、兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?(8分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心是坐標原點,焦點在x軸上,離心率為,又橢圓上任一點到兩焦點的距離和為,過點M(0,)與x軸不垂直的直線交橢圓于P、Q兩點.
(1)求橢圓的方程;
(2)在y軸上是否存在定點N,使以PQ為直徑的圓恒過這個點?若存在,求出N的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)過點(1,0)直線交拋物線于A(x1,y1),B(x2,y2)兩點,拋物線的頂點是.
(ⅰ)證明:為定值;
(ⅱ)若AB中點橫坐標為2,求AB的長度及的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com