【題目】已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
【答案】(1)方程為.焦點(diǎn)坐標(biāo)為(,0),準(zhǔn)線方程為.(2)見解析
【解析】試題分析:(Ⅰ)代入點(diǎn)求得拋物線的方程,根據(jù)方程表示焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(Ⅱ)設(shè)直線l的方程為(),與拋物線方程聯(lián)立,再由根與系數(shù)的關(guān)系,及直線ON的方程為,聯(lián)立求得點(diǎn)的坐標(biāo)為,再證明.
試題解析:(Ⅰ)由拋物線C: 過點(diǎn)P(1,1),得.
所以拋物線C的方程為.
拋物線C的焦點(diǎn)坐標(biāo)為(,0),準(zhǔn)線方程為.
(Ⅱ)由題意,設(shè)直線l的方程為(),l與拋物線C的交點(diǎn)為, .
由,得.
則, .
因?yàn)辄c(diǎn)P的坐標(biāo)為(1,1),所以直線OP的方程為,點(diǎn)A的坐標(biāo)為.
直線ON的方程為,點(diǎn)B的坐標(biāo)為.
因?yàn)?/span>
,
所以.
故A為線段BM的中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:,:,則下面結(jié)論正確的是( )
A. 把上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線
B. 把上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線
C. 把上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線
D. 把上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒子里放有外形相同且編號為1,2,3,4,5的五個(gè)小球,其中1號與2號是黑球,3號、4號與5號是紅球,從中有放回地每次取出1個(gè)球,共取兩次.
(1)求取到的2個(gè)球中恰好有1個(gè)是黑球的概率;
(2)求取到的2個(gè)球中至少有1個(gè)是紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條光線經(jīng)過P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某山區(qū)小學(xué)有100名四年級學(xué)生,將全體四年級學(xué)生隨機(jī)按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號按依次增加10進(jìn)行系統(tǒng)抽樣.
(1)若抽出的一個(gè)號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績之和不小于154分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,側(cè)面是邊長為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項(xiàng)和記為, ,點(diǎn)在直線上, .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè), , 是數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;
(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求這兩個(gè)點(diǎn)都在直線的右下方的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中, , , 為棱的中點(diǎn).
(Ⅰ)探究直線與平面的位置關(guān)系,并說明理由;
(Ⅱ)若,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com