設(shè)拋物線(xiàn)y2=2pxp>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn),點(diǎn)C在拋物線(xiàn)的準(zhǔn)線(xiàn)上,且BCx軸.證明直線(xiàn)AC經(jīng)過(guò)原點(diǎn)O.

答案:
解析:

證明:解法一:設(shè)直線(xiàn)方程為ykx)(如圖1)

Ax1,y1),Bx2,y2),C,y2

又∵y12=2px1  ∴kOCkOA

k也是直線(xiàn)OA的斜率,所以AC經(jīng)過(guò)原點(diǎn)O.

當(dāng)k不存在時(shí),ABx軸,同理可得kOAkOC

解法二:如圖2,過(guò)AADl,D為垂足,

則:ADEFBC

連結(jié)ACEF相交于點(diǎn)N

由拋物線(xiàn)的定義可知:|AF|=|AD|,|BF|=|BC|

∴|EN|==|NF|.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)選修數(shù)學(xué)-1-1蘇教版 蘇教版 題型:047

設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,直線(xiàn)l過(guò)點(diǎn)F交拋物線(xiàn)于A(yíng)、B兩點(diǎn),點(diǎn)M在拋物線(xiàn)的準(zhǔn)線(xiàn)上,O為坐標(biāo)原點(diǎn),設(shè)A(x1,y1),B(x2,y2).

(1)求證:y1y2=-p2;

(2)求證:直線(xiàn)MA、MF、MB的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:047

設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A(yíng),B兩點(diǎn),點(diǎn)C在拋物線(xiàn)的準(zhǔn)線(xiàn)上,且BC∥x軸,證明直線(xiàn)AC經(jīng)過(guò)原點(diǎn)O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省杭州學(xué)軍中學(xué)2009屆高三第十次月考數(shù)學(xué)(文)試題 題型:044

設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A(yíng)(x1,y1)、B(x2,y2)(y1>0,y2<0)兩點(diǎn),M是拋物線(xiàn)的準(zhǔn)線(xiàn)上的一點(diǎn),O是坐標(biāo)原點(diǎn),若直線(xiàn)MA、MF、MB的斜率分別記為:kMA=a、kMF=b、kMB=c,(如圖)

(1)若y1y2=-4,求拋物線(xiàn)的方程;

(2)當(dāng)b=2時(shí),求證:a+c為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)y2=2px(p> 0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A(yíng)、B兩點(diǎn).點(diǎn)C在拋物線(xiàn)的準(zhǔn)線(xiàn)上,且BC∥x軸.證明直線(xiàn) AC經(jīng)過(guò)原點(diǎn)O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:填空題

設(shè)拋物線(xiàn)y2=2PxP>0)的焦點(diǎn)為F,點(diǎn)A(0,2).若線(xiàn)段FA的中點(diǎn)B在拋物線(xiàn)上,則B到該拋物線(xiàn)準(zhǔn)線(xiàn)的距離為        .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案