若函數(shù)
(Ⅰ)若,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若f(x)的最小值為-2,試確定常數(shù)a的值.
【答案】分析:(1)利用三角函數(shù)公式,將f(x)化成一角一函數(shù)形式,再利用三角函數(shù)性質(zhì)求出單調(diào)增區(qū)間.
(2)利用三角函數(shù)公式,將f(x)化成一角一函數(shù)形式,再利用三角函數(shù)性質(zhì)求出最小值,解關(guān)于a的方程即可.
解答:解:(Ⅰ)當(dāng)時(shí),f(x)=+sincos=+sincos=cos2x+sin2x=sin(x+
由2kπ-≤x+≤2kπ+得2kπ-≤x≤2kπ+,k∈Z,
f(x)的單調(diào)增區(qū)間[2kπ-,2kπ+],k∈Z.
(Ⅱ)f(x)=cosx+asinx=sin(x+φ),
f(x)的最小值為-2,即-=-2,
解得a=±
點(diǎn)評(píng):本題考查三角函數(shù)公式的應(yīng)用,三角函數(shù)性質(zhì),方程思想.考查轉(zhuǎn)化計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
,
m
n
,(x,y,b,c∈R),且把其中x,y所滿(mǎn)足的關(guān)系式記為y=f(x),若f′(x)為f(x)的導(dǎo)函數(shù),F(xiàn)(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函數(shù)f(x)在[
a
2
a2]
上單調(diào)遞減,求b的取值范圍;
(Ⅲ)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A,B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t),若P為S(t)上一動(dòng)點(diǎn),D(4,0),求直線PD的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州模擬)設(shè)函數(shù)f(x)=ax2+lnx.
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
12
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問(wèn):在區(qū)間[1,10]上是否存在k(k<100)個(gè)正數(shù)x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
3
x3-
1
2
ax2+(a2-13) x+1
在區(qū)間(1,4)內(nèi)為減函數(shù),在區(qū)間(6,+∞)上為增函數(shù).
(1)試求實(shí)數(shù)a的取值范圍.
(2)若a=2,求f(x)=c有三個(gè)不同實(shí)根時(shí),c的取值范圍.
(說(shuō)明:第二問(wèn)能用f(x)表達(dá)即可,不必算出最結(jié)果.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)同時(shí)滿(mǎn)足以下兩個(gè)條件:①f(x)在其定義域上是單調(diào)函數(shù);②在f(x)的定義域內(nèi)存在區(qū)間[a,b],使得f(x)在[a,b]上的值域是[a,b].則稱(chēng)函數(shù)f(x)為“自強(qiáng)”函數(shù).
(1)判斷函數(shù)f(x)=2x-1是否為“自強(qiáng)”函數(shù)?若是,則求出a,b若不是,說(shuō)明理由;
(2)若函數(shù)f(x)=
2x-1
+t是“自強(qiáng)”函數(shù),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln x-
b
x
(b為實(shí)數(shù))
(1)若b=-1,求函數(shù)f(x)的極值;
(2)若函數(shù)M(x)滿(mǎn)足M(x)≥N(x)恒成立,則稱(chēng)M(x)是N(x)的一個(gè)“上界函數(shù)”.
①如果函數(shù)f(x)為g(x)=-Inx的一個(gè)“上界函數(shù)”,求b的取值范圍;
②若b=0,函數(shù)F(x)的圖象與函數(shù)f(x)的圖象關(guān)于直線y=x對(duì)稱(chēng),求證:當(dāng)x∈(-2,+∞)時(shí),函數(shù)F(x)是函數(shù)y=f(
x
2
+1)+
x
2
+1
的一個(gè)“上界函數(shù)”.

查看答案和解析>>

同步練習(xí)冊(cè)答案