設(shè)點A(2,-3),B(-3,-2),直線l過原點且與線段AB相交,則l的斜率k的取值范圍是( 。
A、k≥
2
3
或k≤-
3
2
B、k≥
3
2
或k≤-
2
3
C、-
3
2
≤k≤
2
3
D、-
2
3
≤k≤
3
2
考點:直線的圖象特征與傾斜角、斜率的關(guān)系,兩條直線的交點坐標(biāo)
專題:直線與圓
分析:畫出圖形,由題意得所求直線l的斜率k滿足 k≤kPB 或 k≥kPA,用直線的斜率公式求出kPB 和kPA 的值,求出直線l的斜率k的取值范圍.
解答: 解:如圖所示:由題意得,所求直線l的斜率k滿足 k≤kPB 或 k≥kPA
即kPA為:k≥
0+2
0+3
=
2
3
,或kPB為:k≤
0+3
0-2
=-
3
2

∴k≥
2
3
,或k≤-
3
2
,
即直線的斜率的取值范圍是k≥
2
3
或k≤-
3
2

故選A.
點評:本題考查直線的斜率公式的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,解題的關(guān)鍵是利用了數(shù)形結(jié)合的思想,解題過程較為直觀,本題類似的題目比較多.可以移動一個點的坐標(biāo),變式出其他的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足i-z=2-i,則z=( 。
A、-1+2iB、-2+2i
C、1+2iD、1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若loga
4
3
>1,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較大。
3
2
,log827,log925.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,若C=60°,3a=2c=6,則b值為( 。
A、
3
B、
2
C、
6
-1
D、1+
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=
an-1
1+2an-1
(n>1),記bn=
1
an

(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足約束條件
2x+3y-5≤0
2x-y-5≤0
x≥0
,則函數(shù)z=|x+y+1|的最小值是(  )
A、0
B、4
C、
8
3
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={0,1},N={1,2},則M∪N等于( 。
A、{1}
B、{0,1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,sn表示前n項和,a2+a5=13,S5=25.求:
(Ⅰ) 首項a1和公差d;
(Ⅱ) 該數(shù)列的前20項的和S20的值.

查看答案和解析>>

同步練習(xí)冊答案