已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+
4
3
有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.
由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|=
(x1+x2)2-4x1x2
=
a2+8

當(dāng)a∈[1,2]時,
a2+8
的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
4
3
=0的判別式
△=4m2-12(m+
4
3
)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“p且q”為真命題,只需P真Q真,即
2≤m≤8
m<-1或m>4
,
解得實數(shù)m的取值范圍是(4,8].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+
43
有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高二下學(xué)期第二階段(半期)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為假命題、“p或q”為真命題的實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+數(shù)學(xué)公式有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《集合與簡易邏輯》2013年山東省淄博市高三數(shù)學(xué)復(fù)習(xí)(理科)(解析版) 題型:解答題

已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案