已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+數(shù)學(xué)公式有兩個(gè)不同的零點(diǎn).求使“p且q”為真命題的實(shí)數(shù)m的取值范圍.

解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==
當(dāng)a∈[1,2]時(shí),的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
△=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“p且q”為真命題,只需P真Q真,即 ,
解得實(shí)數(shù)m的取值范圍是(4,8].
分析:利用二次方程的韋達(dá)定理求出|x1-x2|,將不等式恒成立轉(zhuǎn)化為求函數(shù)的最值,求出命題p為真命題時(shí)m的范圍;利用二次方程有兩個(gè)不等根判別式大于0,求出命題Q為真命題時(shí)m的范圍;p且q為真轉(zhuǎn)化為兩個(gè)命題全真,求出m的范圍.
點(diǎn)評(píng):本題考查二次方程的韋達(dá)定理、二次方程有根的判斷、復(fù)合命題的真假與構(gòu)成其簡(jiǎn)單命題的真假的關(guān)系能及恒成立問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+
43
有兩個(gè)不同的零點(diǎn).求使“p且q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高二下學(xué)期第二階段(半期)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個(gè)不同的零點(diǎn).求使“p且q”為假命題、“p或q”為真命題的實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+
4
3
有兩個(gè)不同的零點(diǎn).求使“p且q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《集合與簡(jiǎn)易邏輯》2013年山東省淄博市高三數(shù)學(xué)復(fù)習(xí)(理科)(解析版) 題型:解答題

已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個(gè)不同的零點(diǎn).求使“p且q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案