19.如圖1,在直角梯形ABCD中,AD∥BC,AD⊥AB,AB=BC=$\frac{1}{2}$AD,E是AD的中點,O是AC與BE的交點,將△ABE沿BE折起到△A1BE的位置,如圖2,
(1)證明:平面A1DC⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求直線CB與平面A1BE所成角的大。

分析 (1)根據(jù)線面垂直以及面面垂直的判定定理證明即可;(2)先求出∠CBO為直線CB與平面A1BE所成的角,解直角三角形即可.

解答 解:(1)在圖1中,
因為AB=BC=1,AD=2,E是AD的中點,∠BAD=$\frac{π}{2}$,所以BE⊥AC,
即在圖2中,BE⊥OA1,BE⊥OC,
從而BE⊥平面A1OC,
又CD∥BE,所以CD⊥平面A1OC.
又CD?平面A1DC,所以平面A1DC⊥平面A1OC…(6分)
(2)平面A1BE⊥平面BCDE,平面A1BE∩平面BCDE=BE,CO?平面BCDE,CO⊥BE,
∴CO⊥平面A1BE,故∠CBO為直線CB與平面A1BE所成的角…(9分)
在直角三角形COB中,易知CO=OB,∴∠CBO=45°…(11分)
故直線CB與平面A1BE所成的角為45°…(12分)

點評 本題考查了線面垂直、面面垂直的判定定理,考查線面角問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.y=x${e}^{\frac{1}{{x}^{2}}}$的鉛直漸近線是x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖:在三棱柱ABC-A1B1C1中,四邊形A1ABB1是菱形,四邊形BCC1B1是矩形,且C1B1⊥AB.
(1)求證:CB⊥平面A1ABB1    
(2)若C1B1=3,AB=4,∠ABB1=60°,求AC1與平面BCC1B1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(1+$\sqrt{3}$tanx)•cos2x,
(Ⅰ)當x∈[$\frac{π}{6}$,$\frac{π}{2}$)時,求函數(shù)f(x)的取值范圍;
(Ⅱ)若在△ABC中,AC=2,BC=2$\sqrt{3}$,f($\frac{A}{2}$)=$\frac{3}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某市政府欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個休閑娛樂公園(如圖中陰影部分),形狀為直角梯形OPRE(線段EO和RP為兩條底邊),已知AB=2km,BC=6km,AE=BF=4km,其中曲線AF是以A為頂點、AD為對稱軸的拋物線的一部分.
(1)求曲線AF與AB,BF所圍成區(qū)域的面積;
(2)求該公園的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖(1),在Rt△ABC中,∠C=90°,BC=2,AC=4,點D,E分別是AC,AB的中點,將△ADE沿DE折起到△A1DE的位置,使A1D⊥DC如圖(2)所示,M為A1D的中點,求CM與面A1EB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若f(x)是定義在(0,+∞)上的增函數(shù),且對一切x,y>0,滿足f($\frac{x}{y}$)=f(x)-f(y),
(1)求f(1)的值;
(2)證明f(x2)=2f(x)(x>0);
(3)若f(4)=1,解關(guān)于x不等式f(x2+$\frac{8}{3}$x)-f($\frac{1}{3}$)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下列命題中,判斷條件p是條件q的什么條件:
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四邊形的對角線互相平分,q:四邊形是矩形;
(4)p:p且q是真命題,q:非p為假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在(-1,1)內(nèi)有零點且單調(diào)遞增的是( 。
A.y=log2(x+2)B.y=2x-1C.y=x2-$\frac{1}{2}$D.y=-x3

查看答案和解析>>

同步練習(xí)冊答案