已知函數(shù)是定義在上的奇函數(shù),給出下列命題:

(1);

(2)若在 [0, 上有最小值 -1,則上有最大值1;

(3)若在 [1, 上為增函數(shù),則上為減函數(shù);

(4)若時(shí),; 則時(shí),

其中正確的序號(hào)是:                  。

 

【答案】

①②④

【解析】

試題分析:(1)利用奇函數(shù)的定義可作出判斷;(2)利用奇函數(shù)的定義以及圖象關(guān)于原點(diǎn)對(duì)稱可作出判斷;(3)利用奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致作出判斷。(4)結(jié)合奇函數(shù)的對(duì)稱性求解得到。

解:(1)因?yàn)閒(x)是R上的奇函數(shù),所以f(-x)=-f(x),則f(-0)=-f(0),即f(0)=0,故(1)正確;(2)f(x)在[0,+∞)上有最小值-1,即f(x)-1,當(dāng)x∈(-∞,0)時(shí),-x∈(0,+∞),則f(-x)-1,所以f(x)=-f(-x)1,即f(x)在(-∞,0)上有最大值1,故(2)正確;(3)因?yàn)槠婧瘮?shù)的圖象關(guān)于原點(diǎn)對(duì)稱,所以奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致,故(3)錯(cuò)誤;(4)若時(shí),; 則根據(jù)奇函數(shù),結(jié)合對(duì)稱性可知,時(shí),成立,故答案為:①②④.

考點(diǎn):函數(shù)的性質(zhì)運(yùn)用

點(diǎn)評(píng):本題以命題為載體考查函數(shù)的奇偶性、單調(diào)性,準(zhǔn)確把握奇偶函數(shù)的定義及其圖象特征是解決本題的基礎(chǔ)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆廣西柳州鐵路一中高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),且。

(1)求函數(shù)的解析式;

(2)用單調(diào)性的定義證明上是增函數(shù);

(3)解不等式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆遼寧省本溪市高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知函數(shù)是定義在上的奇函數(shù),且,

(1)確定函數(shù)的解析式;

(2)用定義證明在(-1 ,1)上是增函數(shù);

(3)解不等式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)是定義在上的以5為周期的奇函數(shù), 若,

  ,則a的取值范圍是 (    )

A.                                 B.

C.                                  D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省協(xié)作體高三3月調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)

(Ⅰ)設(shè),求證:當(dāng)時(shí),;

(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省2012屆高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),且

(1)確定函數(shù)的解析式;

(2)判斷并證明的單調(diào)性;

(3)解不等式

 

查看答案和解析>>

同步練習(xí)冊(cè)答案