h(x)=
2
x2
+lg(x+
x2+1
)
且h(-1)=1.62,則h(1)約等于(  )
A、0.38B、1.62
C、2.38D、2.62
分析:先將h(-1),h(1)表示為函數(shù)的形式,再尋求兩者間的內(nèi)在聯(lián)系.
解答:解:∵f(x)=
2
x2
+lg(x+
x2+1
)

∴h(-1)=2+lg(
2
-1
)=1.62
lg(
2
-1) =-0.38

lg(
2
+1) =0.38

h(1)=2+lg(
2
+1) =2.38

故選C
點評:本題主要考查求函數(shù)值及對數(shù)運算法則和轉(zhuǎn)化化歸思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).設f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).
(Ⅰ)設a=1,b=2,若h (x)為偶函數(shù),求h(
2
)
;
(Ⅱ)設b>0,若h (x)同時也是g(x)、l(x)在R上生成的一個函數(shù),求a+b的最小值;
(Ⅲ)試判斷h(x)能否為任意的一個二次函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年西城區(qū)抽樣理)(14分)

 已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x) = m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).

f (x)=x2+axg(x)=x+b(R),l(x)= 2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).

(Ⅰ)設,若h (x)為偶函數(shù),求;

(Ⅱ)設,若h (x)同時也是g(x)、l(x) 在R上生成的一個函數(shù),求a+b的最小值;

(Ⅲ)試判斷h(x)能否為任意的一個二次函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高二下學期期末考試數(shù)學卷 題型:解答題

(本小題滿分16分)

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x) = m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).

f (x)=x2+ax,g(x)=x+b(R),= 2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).

(1)設,若h (x)為偶函數(shù),求

(2)設,若h (x)同時也是g(x)、l(x) 在R上生成的一個函數(shù),求a+b的最小值;

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).設f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).
(Ⅰ)設a=1,b=2,若h (x)為偶函數(shù),求h(
2
)
;
(Ⅱ)設b>0,若h (x)同時也是g(x)、l(x)在R上生成的一個函數(shù),求a+b的最小值;
(Ⅲ)試判斷h(x)能否為任意的一個二次函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年北京市西城區(qū)高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).設f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).
(Ⅰ)設a=1,b=2,若h (x)為偶函數(shù),求;
(Ⅱ)設b>0,若h (x)同時也是g(x)、l(x)在R上生成的一個函數(shù),求a+b的最小值;
(Ⅲ)試判斷h(x)能否為任意的一個二次函數(shù),并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案