A. | 10 | B. | $\frac{31}{3}$ | C. | 11 | D. | $\frac{32}{3}$ |
分析 聯(lián)解方程組,得直線與拋物線交于點(diǎn)A(-3,-6)和B(1,2),因此求出函數(shù)3-x2-2x在區(qū)間[-3,1]上的定積分值,就等于所求陰影部分的面積,接下來利用積分計(jì)算公式和法則進(jìn)行運(yùn)算,即可得到本題的答案.
解答 解:由拋物線y=3-x2與直線y=2x聯(lián)立,
解得交于點(diǎn)A(-3,-6)和B(1,2)
∴兩圖象圍成的陰影部分的面積為S=${∫}_{-3}^{1}$(3-x2-2x)dx=$(3x-\frac{1}{3}{x}^{3}-{x}^{2}){|}_{-3}^{1}$
=(3×1-$\frac{1}{3}$×13-12)-[3×(-3)-$\frac{1}{3}$×(-3)3-(-3)2]
=$\frac{32}{3}$,
故選:D.
點(diǎn)評 本題求直線與拋物線圍成的陰影部分圖形的面積,著重考查了定積分計(jì)算公式和定積分的幾何意義等知識(shí),屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{55}$ | B. | 9 | C. | $\sqrt{91}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | -$\frac{2}{3}\sqrt{2}$ | D. | $\frac{2}{3}\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 110 | B. | 99 | C. | 55 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a2≥b,則a≥$\sqrt$或a≤-$\sqrt$ | B. | 若a2>b,則a>$\sqrt$或a<-$\sqrt$ | ||
C. | 若a≥$\sqrt$或a≤-$\sqrt$,則a2≥b | D. | 若a>$\sqrt$或a<-$\sqrt$,則a2>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com