考點(diǎn):兩角和與差的余弦函數(shù)
專(zhuān)題:計(jì)算題,三角函數(shù)的求值
分析:(1)根據(jù)角的范圍和同角三角函數(shù)關(guān)系式先求得:sin(x+y),sin(x-y)的值,從而化簡(jiǎn)所求cos2x=cos[(x+y)+(x-y)]=cos(x+y)cos(x-y)-sin(x+y)sin(x-y),即可代入求值.
(2)由cos(x+y)=
,cos(x-y)=
,可得:
| cosxcosy-sinxsiny= | cosxcosy+sinxsiny= |
| |
即可解得所求.
解答:
解:(1)由
0<x<,<y<得
<x+y<π,-<x-y<故
sin(x+y)=.(3分)
而:若
0<x-y<,則
cos(x-y)∈(,1),此時(shí)
cos(x-y)=不可能.故有:
-
<x-y≤0,此時(shí)sin(x-y)=-
(4分)
故cos2x=cos[(x+y)+(x-y)]=cos(x+y)cos(x-y)-sin(x+y)sin(x-y)=
. (5分)
(2)cos(x+y)=
,cos(x-y)=
,
可得:
| cosxcosy-sinxsiny= | cosxcosy+sinxsiny= |
| |
(7分)
解得:
,可得tanxtany=
.(10分)
點(diǎn)評(píng):本題主要考察了兩角和與差的余弦函數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.