分析 (Ⅰ)由三角函數(shù)中的恒等變換應(yīng)用化簡可得解析式f(x)=sin(2x-$\frac{π}{6}$),根據(jù)三角函數(shù)的周期公式,求得f(x)的最小正周期,
(Ⅱ)f(x0)=$\frac{\sqrt{2}}{2}$,求出sin(2x0-$\frac{π}{6}$)的值,根據(jù)x0的取值范圍求出cos(2x0-$\frac{π}{6}$),2x0=2x0-$\frac{π}{6}$+$\frac{π}{6}$利用兩角差的余弦函數(shù)求解即可.
解答 解:(Ⅰ)f(x)=$\frac{1}{2}$(-cos2x+$\sqrt{3}$)-$\frac{\sqrt{3}}{2}$[1-cos2(x-$\frac{π}{4}$)],
=-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$cos2(x-$\frac{π}{4}$),
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x,
=sin(2x-$\frac{π}{6}$),
則f(x)的最小正周期T=$\frac{2π}{ω}$=π;
(Ⅱ)f(x0)=$\frac{\sqrt{2}}{2}$,sin(2x0-$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$,
x0∈[$\frac{π}{6}$,$\frac{π}{3}$],2x0-$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{π}{2}$],
∴cos(2x0-$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$,
cos2x0=cos[(2x0-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(2x0-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(2x0-$\frac{π}{6}$)sin$\frac{π}{6}$,
=$\frac{\sqrt{2}}{2}$($\frac{\sqrt{3}}{2}$-$\frac{1}{2}$),
=$\frac{\sqrt{6}-\sqrt{2}}{4}$.
∴cos2x0=$\frac{\sqrt{6}-\sqrt{2}}{4}$.
點評 本題考查二倍角公式、誘導(dǎo)公式及輔助角公式,函數(shù)的周期的求法,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ef(2015)>f(2016) | B. | ef(2015)<f(2016) | ||
C. | ef(2015)=f(2016) | D. | ef(2015)與f(2016)大小關(guān)系不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com