分析 (1)通過(guò)$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n}{{{a_n}+1}}$=n與$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n-1}{{a}_{n-1}+1}$=n-1(n≥2)作差,進(jìn)而整理即得結(jié)論;
(2)通過(guò)(1)裂項(xiàng)可知$\frac{1}{{S}_{n}}$=2($\frac{1}{n-1}$-$\frac{1}{n}$)(n≥2),進(jìn)而并項(xiàng)相加即得結(jié)論.
解答 解:(1)∵$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n}{{{a_n}+1}}$=n,
∴$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n-1}{{a}_{n-1}+1}$=n-1(n≥2),
兩式相減得:$\frac{n}{{{a_n}+1}}$=1,即an=n-1,
又∵$\frac{1}{{{a_1}+1}}$=1,即a1=0滿足上式,
∴an=n-1;
(2)結(jié)論:存在整數(shù)m=1,使對(duì)任意n∈N+,不等式Tn≤m恒成立.
理由如下:
由(1)可知Sn=$\frac{n(n+1)}{2}$,$\frac{1}{{S}_{n}}$=2($\frac{1}{n-1}$-$\frac{1}{n}$)(n≥2),
∴Tn=$\frac{1}{{{S_{n+1}}}}$+$\frac{1}{{{S_{n+2}}}}$+$\frac{1}{{{S_{n+3}}}}$+…+$\frac{1}{{{S_{2n}}}}$
=2($\frac{1}{n}$-$\frac{1}{n+1}$+$\frac{1}{n+1}$-$\frac{1}{n+2}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$)
=2($\frac{1}{n}$-$\frac{1}{2n}$)
=$\frac{1}{n}$,
要存在整數(shù)m,使對(duì)任意n∈N+,不等式Tn≤m恒成立,即(Tn)max≤m,
由{$\frac{1}{n}$}單調(diào)遞減可知當(dāng)n=1時(shí),Tn取最大值1,即m=1.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 3 | C. | 3$\sqrt{2}$-1 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若x>1,則x2≤1 | B. | 若x2≤1,則x≤1 | C. | 若x≤1,則x2≤1 | D. | 若x<1,則x2<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.043 | B. | 0.0215 | C. | 0.3413 | D. | 0.4772 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{9}{5}$ | B. | -$\frac{12}{5}$ | C. | $\frac{12}{5}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com