4.由直線與圓相切時,圓心與切點(diǎn)連線與直線垂直,想到平面與球相切時,球心與切點(diǎn)連線與平面垂 直,用的是( 。
A.類比推理B.演繹推理C.歸納推理D.傳遞性推理

分析 從直線想到平面,從圓想到球,即從平面類比到空間.

解答 解:從直線類比到平面,從圓類比到球,即從平面類比到空間.用的是類比推理.
故選:A.

點(diǎn)評 本題主要考查學(xué)生的知識量和對知識的遷移類比的能力.類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).但類比推理的結(jié)論不一定正確,還需要經(jīng)過證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一空間幾何體的三視圖如圖所示,該幾何體的體積為12π+$\frac{{8\sqrt{5}}}{3}$,則該幾何體的表面積的值為( 。
A.20π-8+4$\sqrt{14}$B.20π+2$\sqrt{14}$C.20π-8+2$\sqrt{14}$D.20π+4$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=4sin(ωx-$\frac{π}{4}$)•cosωx在x=$\frac{π}{4}$處取得最值,其中ω∈(0,2).
(1)求函數(shù)f(x)的最小正周期;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{36}$個單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的3倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,若方程g(x)+k=0在[0,π]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,設(shè)區(qū)域D={(x,y)|0≤x≤1,0≤y≤1,向區(qū)域內(nèi)隨機(jī)投一點(diǎn),且投入到區(qū)域內(nèi)任一點(diǎn)都是等可能的,則點(diǎn)落到由曲線y=$\sqrt{x}$與y=x2所圍成陰影區(qū)域內(nèi)的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.二項(xiàng)式($\frac{1}{x}$-x$\sqrt{x}$)n展開式中含有x2項(xiàng),則n可能的取值是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,且α,β均為銳角,則α+β的值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}1≤x≤2\\ y≤2\\ 2x-y≤2\end{array}\right.$,則z=2x+y的最大值為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)f(x)=(-x2+ax+a)ex(a>0,e是自然常數(shù))
(1)當(dāng)x∈[0,1]時,函數(shù)f(x)的最大值是$\frac{\sqrt{e}}{2}$,求a的值;
(2)當(dāng)x∈(0,1]時,證明:2x3-x2-x>$\frac{\sqrt{e}(lnx-x)}{{e}^{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.命題p:?x∈[1,2],使x2+2x≥a成立;命題q:?x∈R,都有3x-9x<a恒成立.若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案