m、n表示直線,α、β、γ表示平面,給出下列四個(gè)命題,其中正確命題為( )
①α∩β=m,n?α,n⊥m,則α⊥β 
②α⊥β,α∩γ=m,β∩γ=n,則m⊥n
③α⊥β,α⊥γ,β∩γ=m,則m⊥α  
④m⊥α,n⊥β,m⊥n,則α⊥β
A.①②
B.②③
C.③④
D.②④
【答案】分析:由面面垂直的判定方法,我們可以判斷①的對(duì)錯(cuò),由線線垂直的定義及判定方法可以判斷②的真假,由面面垂直的性質(zhì)及線面垂直的判定方法,可以判斷③的正誤,由面面垂直的判定方法及線面垂直,線線垂直的定義,我們可以判斷④的真假,進(jìn)而得到答案.
解答:解:若α∩β=m,n?α,n⊥m,不能保證n⊥β,則α⊥β不一定成立,故①錯(cuò)誤;
若α⊥β,α∩γ=m,β∩γ=n,則m與n可能平行也可能相交,故②錯(cuò)誤;
若α⊥β,α⊥γ,β∩γ=m,設(shè)α∩β=a,α∩γ=b,則m⊥a且m⊥b,故m⊥α,故③正確;
若m⊥α,m⊥n,則n?α或n∥α,又由n⊥β,則α⊥β,故④正確.
故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面垂直的判定及平面與平面垂直的性質(zhì),其中熟練掌握空間線面之間垂直及平等的判定、性質(zhì)、定義是解答此類問題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若m,n表示直線,α表示平面,則下列命題中,正確命題的個(gè)數(shù)為( 。
m∥n
m⊥α
?n⊥α
;②
m⊥α
n⊥α
?m∥n
;③
m⊥α
n∥α
?m⊥n
;④
m∥α
m⊥n
?n⊥α
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9、已知m、n表示直線,α、β,表示平面,則下面命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號(hào)是
①②③

①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若α∥β且β∥γ,則α∥γ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

α,β表示平面,m,n表示直線,則m∥α的一個(gè)充分條件是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淮北一模)已知m、n表示直線,α,β,γ表示平面,給出下列四個(gè)命題,其中真命題為
(1)α∩β=m.n?α,n⊥m,則α⊥β
(2)α⊥β,α∩γ=m,β∩γ=n,則n⊥m
(3)m⊥α,m⊥β,則α∥β
(4)m⊥α,n⊥β,m⊥n,則α⊥β( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案