14.若復(fù)數(shù)z滿足|z|=1,則|($\overline{z}$+i)(z-i)|的最大值是2$\sqrt{2}$.

分析 復(fù)數(shù)z滿足|z|=1,可得$\overline{z}•z$=1.令z=cosθ+isinθ,θ∈[0,2π).可得($\overline{z}$+i)(z-i)=1+(z-$\overline{z}$)i+1=2+2isinθ.再利用模的計(jì)算公式即可得出.

解答 解:∵復(fù)數(shù)z滿足|z|=1,∴$\overline{z}•z$=1.
令z=cosθ+isinθ,θ∈[0,2π).
則($\overline{z}$+i)(z-i)=1+(z-$\overline{z}$)i+1=2+2isinθ.
∴|($\overline{z}$+i)(z-i)|=$\sqrt{4+4si{n}^{2}θ}$≤2$\sqrt{2}$,當(dāng)且僅當(dāng)sinθ=±1時(shí)取等號(hào).
∴|($\overline{z}$+i)(z-i)|的最大值是2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、模的計(jì)算公式、三角函數(shù)的單調(diào)性與值域,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在英國(guó)的某一娛樂(lè)節(jié)目中,有一種過(guò)關(guān)游戲,規(guī)則如下:轉(zhuǎn)動(dòng)圖中轉(zhuǎn)盤(pán)(一個(gè)圓盤(pán)四等分,在每塊區(qū)域內(nèi)分別標(biāo)有數(shù)字1,2,3,4),由轉(zhuǎn)盤(pán)停止時(shí)指針?biāo)笖?shù)字決定是否過(guò)關(guān).在闖n關(guān)時(shí),轉(zhuǎn)n次,當(dāng)次轉(zhuǎn)得數(shù)字之和大于n2時(shí),算闖關(guān)成功,并繼續(xù)闖關(guān),否則停止闖關(guān),闖過(guò)第一關(guān)能獲得10歐元,之后每多闖一關(guān),獎(jiǎng)金翻倍.假設(shè)每個(gè)參與者都會(huì)持續(xù)闖關(guān)到不能過(guò)關(guān)為止,并且轉(zhuǎn)盤(pán)每次轉(zhuǎn)出結(jié)果相互獨(dú)立.
(1)求某人參加一次游戲,恰好獲得10歐元的概率;
(2)某人參加一次游戲,獲得獎(jiǎng)金X歐元,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=sin(ωx+φ)+$\sqrt{3}cos({ωx+φ})({ω>0})$的圖象過(guò)(1,2),若f(x)相鄰的零點(diǎn)為x1,x2且滿足|x1-x2|=6,則f(x)的單調(diào)增區(qū)間為( 。
A.[-2+12k,4+12k](k∈Z)B.[-5+12k,1+12k](k∈Z)C.[1+12k,7+12k](k∈Z)D.[-2+6k,1+6k](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)向量$\overrightarrow{a}$$\overrightarrow$、滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow{a}-\overrightarrow$)=0,則$\overrightarrow{a}$與$\overrightarrow$的夾角是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若等差數(shù)列{an}與等比數(shù)列{bn}中,若a1=b1>0,a11=b11>0,則a6,b6的大小關(guān)系為a6≥b6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若$a={(\frac{1}{2})^{10}}$,$b={(\frac{1}{5})^{-\frac{1}{2}}}$,$c={log_{\frac{1}{5}}}10$,則a,b,c大小關(guān)系為( 。
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若存在正實(shí)數(shù)m,使得關(guān)于x的方程x+a(2x+2m-4ex)[ln(x+m)-lnx]=0成立,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,0)B.$(0,\frac{1}{2e})$C.$(-∞,0)∪[\frac{1}{2e},+∞)$D.$[\frac{1}{2e},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={x|x<-2或x>1,x∈R},B={x|x<0或x>2,x∈R},則(∁RA)∩B是( 。
A.(-2,0)B.(-2,0]C.[-2,0)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,側(cè)面PAD是邊長(zhǎng)為2的正三角形,AB=BD=$\sqrt{5}$,PB=$\sqrt{7}$
(Ⅰ)求證:平面PAD⊥平面ABCD;
(Ⅱ)設(shè)Q是棱PC上的點(diǎn),當(dāng)PA∥平面BDQ時(shí),求QB與面ABCD成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案