14.已知各項為正數(shù)的數(shù)列{an},滿足$\frac{1}{{{a_{n+1}}}}=\frac{1}{{{a_n}+1}}$,n∈N*,其中a1=1,Sn為其前n項的和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列$\left\{{\left.{\frac{1}{S_n}}\right\}}\right.$的前n項和Tn

分析 (Ⅰ)利用已知條件推出數(shù)列{an}是等差數(shù)列,然后求解通項公式;
(Ⅱ)利用裂項消項法求解數(shù)列的和即可.

解答 解:(Ⅰ)∵$\frac{1}{{{a_{n+1}}}}=\frac{1}{{{a_n}+1}}$即an+1-an=1,
所以數(shù)列{an}是以1為首項,1為公差的等差數(shù)列,…2分
∴an=n…3分
(Ⅱ)${S_n}=\frac{n(n+1)}{2}$…5分
∴${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}=2[\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{n(n+1)}]$
=$2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})]$…7分
=$2(1-\frac{1}{n+1})=\frac{2n}{n+1}$…9分.

點評 本題考查數(shù)列的通項公式的求法,數(shù)列求和的方法的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.向量$\overrightarrow{AB}$對應(yīng)復(fù)數(shù)-3+2i,則向量$\overrightarrow{BA}$所對應(yīng)的復(fù)數(shù)為3-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x||x-1|<1},B={x|x2-1<0},則A∪B=(  )
A.(-1,1)B.(-1,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=$\frac{1}{2}×$(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦圍城,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角$\frac{2π}{3}$,半徑為6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約是($\sqrt{3}≈1.73$)( 。
A.16平方米B.18平方米C.20平方米D.25平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.把正整數(shù)按“f(x)”型排成了如圖所示的三角形數(shù)表,第f(x)行有f(x)個數(shù),對于第f(x)行按從左往右的順序依次標(biāo)記第1列,第2列,…,第f(x)列(比如三角形數(shù)表中12在第5行第4列,18在第6行第3列),則三角形數(shù)表中2017在(  )
A.第62行第2列B.第64行第64列C.第63行第2列D.第64行第1列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(1+x)3+(1+x)4+…+(1+x)50的展開式中的x3的系數(shù)為47600.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系中,已知橢圓兩焦點坐標(biāo)為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),橢圓C上的點到右焦點距離最小值為3-2$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設(shè)斜率為-2的直線交曲線C于E、F兩點,求線段EF的中點N的軌跡方程;
(3)設(shè)經(jīng)過點F1(-2$\sqrt{2}$,0)的直線與曲線C相交所得的弦為線段PQ,求△PQO的面積的最大值(O是坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.${∫}_{0}^{π}$cos$\frac{x}{2}$dx的值是(  )
A.2B.1C.4D.5

查看答案和解析>>

同步練習(xí)冊答案