6.拋物線x=ay2(a≠0)的焦點坐標(biāo)是$({\frac{1}{4a},0})$.

分析 化簡拋物線方程為標(biāo)準(zhǔn)方程,然后求解焦點坐標(biāo).

解答 解:拋物線x=ay2(a≠0)的標(biāo)準(zhǔn)方程為:y2=$\frac{1}{a}$x,
所以拋物線的焦點坐標(biāo)為:$({\frac{1}{4a},0})$.
故答案為:$({\frac{1}{4a},0})$.

點評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.曲線y=2x2-x在點(0,0)處的切線方程為( 。
A.x+y=0B.x-y=0C.x-y+2=0D.x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=3sin(2x+φ)(-π<φ<0)的圖象向左平移$\frac{π}{6}$后得到的圖象關(guān)于y軸對稱,|φ|=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.5、8、11三數(shù)的標(biāo)準(zhǔn)差為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如表:
價格x(元/kg)1015202530
日需求量y(kg)1110865
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價格x=40元/kg時,日需求量y的預(yù)測值為多少?
參考公式:線性回歸方程$y=bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)m,n,t都是正數(shù),則$m+\frac{4}{n},n+\frac{4}{t},t+\frac{4}{m}$三個數(shù)( 。
A.都大于4B.都小于4
C.至少有一個大于4D.至少有一個不小于4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=2x+3.
(1)求f(x)的解析式;
(2)若f(a)=7,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.滿足等式cos2x-1=3cosx(x∈[0,π])的x值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知兩個不同直線a,b,兩不同平面α,β,下列結(jié)論正確的是(  )
A.若a∥b,a∥α,則b∥αB.若a⊥b,a⊥α,則b⊥α
C.若a∥α,a∥β,α∩β=b,則a∥bD.若a∥α,α⊥β,則a⊥β

查看答案和解析>>

同步練習(xí)冊答案