設(shè)函數(shù) 其中常數(shù)m為整數(shù).
(1) 當(dāng)m為何值時,
(2) 定理: 若函數(shù)g(x) 在[a, b ]上連續(xù),且g(a) 與g(b)異號,則至少存在一點x0∈(a,b),使g(x0)=0.
試用上述定理證明:當(dāng)整數(shù)m>1時,方程f(x)= 0,在[e-m-m ,e2m-m ]內(nèi)有兩個實根.
(I)解:函數(shù)f(x)=x-ln(x+m),x∈(-m,+∞)連續(xù),且
當(dāng)x∈(-m,1-m)時,f ’(x)<0,f(x)為減函數(shù),f(x)>f(1-m)
當(dāng)x∈(1-m, +∞)時,f ’(x)>0,f(x)為增函數(shù),f(x)>f(1-m)
根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,而且
對x∈(-m, +∞)都有f(x)≥f(1-m)=1-m
故當(dāng)整數(shù)m≤1時,f(x) ≥1-m≥0
(II)證明:由(I)知,當(dāng)整數(shù)m>1時,f(1-m)=1-m<0,
函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)減函數(shù).
由所給定理知,存在唯一的
而當(dāng)整數(shù)m>1時,
類似地,當(dāng)整數(shù)m>1時,函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)增函數(shù)且 f(1-m)與異號,由所給定理知,存在唯一的
故當(dāng)m>1時,方程f(x)=0在內(nèi)有兩個實根。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)當(dāng)m為何值時,f(x)≥0;
(Ⅱ)定理:若函數(shù)g(x)在[a,b]上連續(xù),且g(a)與g(b)異號,則至少存在一點x0∈(a,b),使g(x0)=0.
試用上述定理證明:當(dāng)整數(shù)m>1時,方程f(x)=0,在[e-m-m,e2m-m]內(nèi)有兩個實根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)一輪精品復(fù)習(xí)學(xué)案:2.6 函數(shù)應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com