已知函數(shù)f(x)滿足f(x)=2f(
1
x
),當(dāng)x∈[1,3]時(shí),f(x)=lnx在區(qū)間[
1
3
,3]上,函數(shù)g(x)=f(x)-ax(a>0)恰有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意畫(huà)出圖形,結(jié)合a≤kOA=6ln3,當(dāng)直線與曲線f(x)=lnx相切時(shí),可解得k=
1
e
;進(jìn)而求出a的取值范圍.
解答: 解:當(dāng)x∈[
1
3
,1]時(shí),
1
x
∈[1,3],
則f(x)=2f(
1
x
)=2ln
1
x
=-2lnx.
在坐標(biāo)系內(nèi)畫(huà)出分段函數(shù)圖象:
由題意可知:a≤kOA=6ln3,
當(dāng)直線與曲線f(x)=lnx相切時(shí),
解得k=
1
e
;所以a的取值范圍是
1
e
<a≤6ln3.
故答案為:
1
e
<a≤6ln3.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)的判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合U=R,A={x∈N|x≤3},B={-2,-1,0,1,2},則(∁UA)∩B等于(  )
A、{-2,-1,0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},其前n項(xiàng)和為Sn,若a2=4,2Sn=an(n+1),求a1,a3及數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若從區(qū)間(0,e)內(nèi)隨機(jī)取兩個(gè)數(shù),則這兩個(gè)數(shù)之積不小于e的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=logax的圖象經(jīng)過(guò)點(diǎn)(4,2)
(1)求函數(shù)的解析式;
(2)解不等式f(x2-x)>f(x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間四邊形ABCD中,若E、F、G、H分別為AB、BC、CD、DA邊上的中點(diǎn),則下列各式中成立的是( 。
A、
EB
+
BF
+
EH
+
GH
=0
B、
EB
+
FC
+
EH
-
EG
=0
C、
EF
+
FG
+
EH
+
GH
=0
D、
EF
-
FB
+
CG
+
GH
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)將100名高一新生分成水平相同的甲,乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲,乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下,計(jì)成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(1)從乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均“成績(jī)優(yōu)秀”的概率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2x2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).
甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)秀
成績(jī)不優(yōu)秀
總計(jì)
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P((K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=x -k2+k+2,(k∈Z)滿足f(2)<f(3).
(1)求實(shí)數(shù)k的值,并求出相應(yīng)的函數(shù)f(x)解析式;
(2)對(duì)于(1)中的函數(shù)f(x),試判斷是否存在正數(shù)q,使函數(shù)g(x)=1-qf(x)+(2q-1)x在區(qū)間[-1,2]上值域?yàn)?span id="vjr1xzc" class="MathJye">[-4,
17
8
].若存在,求出此q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)數(shù)式logab=x化為指數(shù)式為(  )
A、ab=x
B、ax=b
C、xa=b
D、xb=a

查看答案和解析>>

同步練習(xí)冊(cè)答案