在橢圓中,為橢圓上的一點,過坐標原點的直線交橢圓于兩點,其中在第一象限,過軸的垂線,垂足為,連接,

(1)若直線的斜率均存在,問它們的斜率之積是否為定值,若是,求出這個定值,若不是,說明理由;

(2)若的延長線與橢圓的交點,求證:.

 

 

 

 

 

【答案】

 解:(1) 設

兩式相減得,

……4分

(2)設的方程為代入,解得.

,則,于是.

故直線的斜率為其方程為

代入橢圓方程得

解得,因此得

于是直線的斜率為,因此

所以……10分.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設點A(1,
1
2
)

(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(3)過原點O的直線交橢圓于點B,C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學用《幾何畫板》研究橢圓的性質:打開《幾何畫板》軟件,繪制某橢圓C1
x2
a2
+
y2
b2
=1,在橢圓上任意畫一個點S,度量點S的坐標(xs,ys),如圖1.
(1)拖動點S,發(fā)現(xiàn)當xs=
2
時,ys=0;當xs=0時,ys=1,試求橢圓C1的方程;
(2)該同學知圓具有性質:若E為圓O:x2+y2=r2(r>0)的弦AB的中點,則直線AB的斜率kAB與直線OE的斜率kOE的乘積kAB•kOE為定值.該同學在橢圓上構造兩個不同的點A、B,并構造直線AB,再構造AB的中點E,經(jīng)觀察得:沿著橢圓C1,無論怎樣拖動點A、B,橢圓也具有此性質.類比圓的這個性質,請寫出橢圓C1的類似性質,并加以證明;
(3)拖動點A、B的過程中,如圖2發(fā)現(xiàn)當點A與點B在C1在第一象限中的同一點時,直線AB剛好為C1的切線l,若l分別與x軸和y軸的正半軸交于C,D兩點,求三角形OCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•閘北區(qū)二模)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1、A2為橢圓C的左、右頂點.
(Ⅰ)設F1為橢圓C的左焦點,證明:當且僅當橢圓C上的點P在橢圓的左、右頂點時|PF1|取得最小值與最大值;
(Ⅱ)若橢圓C上的點到焦點距離的最大值為3,最小值為1.求橢圓C的標準方程;
(Ⅲ)若直線l:y=kx+m與(Ⅱ)中所述橢圓C相交于A,B兩點(A,B不是左右頂點),且滿足AA2⊥BA2,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F1、F2分別為橢圓C =1(ab>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設點P是(1)中所得橢圓上的動點,當P在何位置時,最大,說明理由,并求出最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題文科數(shù)學試卷(解析版) 題型:解答題

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結論直線與曲線總有兩個公共點.

然后設點,的坐標分別, ,則,  

要使軸平分,只要得到。

(1)設為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內部得到此結論)

………………6分

設點,的坐標分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,

,即只要  ………………12分  

時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

同步練習冊答案