分析 (1)根據(jù)直線l的方程可得直線經(jīng)過(guò)定點(diǎn)H(1,1),而點(diǎn)H到圓心C(0,1)的距離為1,小于半徑,故點(diǎn)H在圓的內(nèi)部,故直線l與圓C相交,命題得證.
(2)把線段的長(zhǎng)度比轉(zhuǎn)化為兩個(gè)向量的關(guān)系,由向量的坐標(biāo)運(yùn)算得到A,B兩點(diǎn)橫坐標(biāo)間的關(guān)系,聯(lián)立直線與圓的方程化為關(guān)于x的一元二次方程,由根與系數(shù)關(guān)系得到A,B兩點(diǎn)橫坐標(biāo)的和,求出其中一點(diǎn)的橫坐標(biāo),最后再代入關(guān)于x的方程得到關(guān)于m的方程,求解得到m的值,則直線方程可求.
解答 解:(1)由于直線l的方程是mx-y+1-m=0,即 y-1=m(x-1),經(jīng)過(guò)定點(diǎn)H(1,1),
而點(diǎn)H到圓心C(0,1)的距離為1,小于半徑$\sqrt{5}$,故點(diǎn)H在圓的內(nèi)部,故直線l與圓C相交,
故直線和圓恒有兩個(gè)交點(diǎn).;
(2)設(shè)A(x1,y1),B(x2,y2),由$\frac{AP}{PB}$=$\frac{1}{2}$,得$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{PB}$,
∴1-x1=$\frac{1}{2}$(x2-1),化簡(jiǎn)的x2=3-2x1…①
又由直線代入圓的方程,消去y得:(1+m2)x2-2m2x+m2-5=0…(*)
∴x1+x2=$\frac{2{m}^{2}}{1+{m}^{2}}$…②
由①②解得x1=$\frac{3+{m}^{2}}{1+{m}^{2}}$代入(*)式解得m=±1,
∴直線l的方程為x-y=0或x+y-2=0
點(diǎn)評(píng) 本題考查了與直線有關(guān)的動(dòng)點(diǎn)的軌跡方程,考查了直線與圓的關(guān)系,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,考查了學(xué)生的靈活處理問(wèn)題的能力和計(jì)算能力,是中高檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南永州市高三高考一模考試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知,“”是“函數(shù)在上為減函數(shù)”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AC⊥BE | B. | AA1∥平面BEF | ||
C. | 三棱錐A-BEF的體積為定值 | D. | △AEF的面積和△BEF的面積相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,7] | B. | [2,7] | C. | [-2,14] | D. | [2,14] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 2$\sqrt{7}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com