6.設(shè)變量x,y滿足條件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ x-1≤0\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最小值為-2.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.

解答 解:由z=x-y得y=x-z
作出不等式組$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ x-1≤0\end{array}\right.$,對(duì)應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=x-z,
由圖象可知當(dāng)直線y=x-z,過點(diǎn)A時(shí),直線y=x-z的截距最大,此時(shí)z最小,
由$\left\{\begin{array}{l}{2x+y-2=0}\\{x-2y+4=0}\end{array}\right.$,解得A(0,2).
代入目標(biāo)函數(shù)z=x-y,
得z=0-2=-2,
∴目標(biāo)函數(shù)z=x-y的最小值是-2,
故答案為:-2.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,b=4,cosB=$\frac{1}{4}$.則邊c的長(zhǎng)度為( 。
A.4B.2C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2elnx.(e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的圖象在(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的導(dǎo)數(shù).
(1)y=3xex-log3x+ln3
(2)$y=\frac{{\sqrt{x}+{x^5}+cosx}}{x^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果關(guān)于x的方程x2+(k+2i)x+3+ki=0有實(shí)根,則(  )
A.k≥4或k≤-4B.$k≥\sqrt{2}$或$k≤-2\sqrt{2}$C.$k=±2\sqrt{3}$D.$k=±2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場(chǎng)比賽中的任一場(chǎng)(三場(chǎng)比賽時(shí)間不沖突),甲乙二人約定他們會(huì)觀看同一場(chǎng)比賽并且他倆觀看每場(chǎng)比賽的可能性相同,又已知丙觀看每一場(chǎng)比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.
(1)求三人觀看同一場(chǎng)比賽的概率;
(2)記觀看第一場(chǎng)比賽的人數(shù)是X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$α∈(0,\frac{π}{2}),β∈(0,\frac{π}{4})$,且tanα=$\frac{cosβ+sinβ}{cosβ-sinβ}$,則下列正確的是( 。
A.$2α-β=\frac{π}{4}$B.$2α+β=\frac{π}{4}$C.$α-β=\frac{π}{4}$D.$α+β=\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高點(diǎn)D的坐標(biāo)為($\frac{π}{8}$,2),由最高點(diǎn)D運(yùn)動(dòng)到相鄰最低點(diǎn)時(shí),函數(shù)圖形與x的交點(diǎn)的坐標(biāo)為($\frac{3π}{8}$,0);
(1)求函數(shù)f(x)的解析式.
(2)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),求函數(shù)f(x)的最大值和最小值以及分別取得最大值和最小值時(shí)相應(yīng)的自變量x的值.
(3)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)減區(qū)間及對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(2,3,1),$\overrightarrow$=(1,2,3),則|$\overrightarrow{a}$-$\overrightarrow$|等于$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案