【題目】一元二次方程x2-mx+m2+m-1=0有兩實根x1,x2.
(1)求m的取值范圍;
(2)求x1x2的最值;
(3)如果,求m的取值范圍.
【答案】(1) (2)最小值為,最大值為1 (3)
【解析】
(1)一元二次方程有兩實根,則判別式△≥0;
(2)利用根與系數的關系求得兩根之積,從而化簡求最值;
(3)利用公式得到|x1-x2|的表達式從而解不等式求m.
(1)∵一元二次方程x2-mx+m2+m-1=0有兩實根x1,x2.
∴△=(-m)2-4(m2+m-1)≥0,
從而解得:-2.
(2)∵一元二次方程x2-mx+m2+m-1=0有兩實根x1,x2.
∴由根與系數關系得:,
又由(1)得:-2,
∴,
從而,x1x2最小值為,最大值為1.
(3)∵一元二次方程x2-mx+m2+m-1=0有兩實根x1,x2.
∴由根與系數關系得:,
∴=,
從而解得:,
又由(1)得: ,
∴.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對數的底數).
(1)若f(x)是(0,+∞)上的單調遞增函數,求實數a的取值范圍;
(2)當a∈時,證明:函數f(x)有最小值,并求函數f(x)的最小值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=x2-a|x-1|-1,a∈R.
(1)判斷并證明函數f(x)的奇偶性;
(2)若f(x)≥0對x∈[1,+∞)恒成立,求a的取值范圍;
(3)寫出f(x)在[-2,2]上的最大值g(a).(不需要解答過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為,右頂點為,.
(1)求的方程;
(2)過點且與軸不重合的直線與交于,兩點,直線,分別與直線交于,兩點,且以為直徑的圓過點.
(。┣的方程;
(ⅱ)記,的面積分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校早上8:00開始上課,假設該校學生小張與小王都在早上7:30--7:50之間到校,且每人在該時間段的任何時刻到校是等可能的,求小張比小王至少早5分鐘到校的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.若不等式f(x)>2mx+1在[-1,3]恒成立,則實數m的取值范圍是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調查研究后發(fā)現,每天空氣污染的指數.f(t),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調節(jié)參數,且a∈(0,1).
(1)令,求x的取值范圍;
(2)若規(guī)定每天中f(t)的最大值作為當天的空氣污染指數,要使該市每天的空氣污染指數不超過5,試求調節(jié)參數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com