12.設(shè)函數(shù)f(x)=|x-1|-|2x+1|的最大值為m.
(1)作出函數(shù)f(x)的圖象;
(2)若a2+2c2+3b2=m,求ab+2bc的最大值.

分析 (1)分類討論,作出函數(shù)f(x)的圖象;
(2)求出函數(shù)的值域,即可求m的值,利用基本不等式求ab+2bc的最大值.

解答 解:(1)當(dāng)x≤-$\frac{1}{2}$時(shí),f(x)=(1-x)+2x+1=x+2;
當(dāng)-$\frac{1}{2}$<x<1時(shí),f(x)=(1-x)-2x-1=-3x:
當(dāng)x≥1時(shí),f(x)=(x-1)-2x-1=-x-2,
函數(shù)f(x)的圖象,如圖所示
;
(2)由題意,當(dāng)x=-$\frac{1}{2}$時(shí),f(x)取得最大值m=1.5,∴a2+2c2+3b2=1.5,
∴ab+2bc≤$\frac{1}{2}$(a2+2c2+3b2)=$\frac{3}{4}$,即ab+2bc的最大值為$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(x-1)7的展開(kāi)式中x2的系數(shù)為-21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.三棱錐V-ABC的三條棱VA,VB,VC兩兩垂直,三個(gè)側(cè)面與底面所成的二面角大小分別為α,β,γ.求證:$cosαcosβcosγ({\frac{1}{{{{cos}^2}α}}+\frac{1}{{{{cos}^2}β}}+\frac{1}{{{{cos}^2}γ}}})≥\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖所示,在棱長(zhǎng)為a的正方體ABCD-A1B2C3D4中,點(diǎn)E,F(xiàn)分別在棱AD,BC上,且AE=BF=$\frac{1}{3}$a.過(guò)EF的平面繞EF旋轉(zhuǎn),與DD1、CC1的延長(zhǎng)線分別交于G,H點(diǎn),與A1D1、B1C1分別交于E1,F(xiàn)1點(diǎn).當(dāng)異面直線FF1與DD1所成的角的正切值為$\frac{1}{3}$時(shí),|GF1|=( 。
A.$\frac{\sqrt{19}a}{3}$B.$\frac{\sqrt{19}a}{9}$C.$\frac{\sqrt{2}a}{3}$D.$\frac{\sqrt{2}a}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.不等式|x+1|-|x-2|>1的解集為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)與拋物線${y^2}=8\sqrt{2}x$的焦點(diǎn)相同,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點(diǎn)N(x0,y0),從原點(diǎn)O向圓N:(x-x02+(y-y02=3作兩條切線,分別交橢圓于A,B兩點(diǎn).試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知焦距為2$\sqrt{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,直線y=$\frac{4}{3}$與橢圓C交于P、Q兩點(diǎn)(P在Q的左邊),Q在x軸上的射影為B,且四邊形ABPQ是平行四邊形.
(1)求橢圓C的方程;
(2)斜率為k的直線l與橢圓C交于兩個(gè)不同的點(diǎn)M,N.
(i)若直線l過(guò)原點(diǎn)且與坐標(biāo)軸不重合,E是直線3x+3y-2=0上一點(diǎn),且△EMN是以E為直角頂點(diǎn)的等腰直角三角形,求k的值
(ii)若M是橢圓的左頂點(diǎn),D是直線MN上一點(diǎn),且DA⊥AM,點(diǎn)G是x軸上異于點(diǎn)M的點(diǎn),且以DN為直徑的圓恒過(guò)直線AN和DG的交點(diǎn),求證:點(diǎn)G是定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,ABCD是塊矩形硬紙板,其中AB=2AD,$AD=\sqrt{2}$,E為DC的中點(diǎn),將它沿AE折成直二面角D-AE-B.
(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M∈AB1,N∈BC1,且AM=BN≠$\sqrt{2}$,有以下四個(gè)結(jié)論:①AA1⊥MN;②AB∥MN;③MN∥平面A1B1C1D1;④MN與A1C1一定是異面直線.其中正確命題的序號(hào)是( 。
A.①③B.②③C.①④D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案