10.等腰△ABC的頂角A=$\frac{2π}{3}$,|BC|=2$\sqrt{3}$,以A為圓心,1為半徑作圓,PQ為該圓的一條直徑,則$\overrightarrow{BP}$•$\overrightarrow{CQ}$的最大值為$2\sqrt{3}-3$.

分析 利用平面向量的三角形法則,將$\overrightarrow{BP}$,$\overrightarrow{CQ}$分別AP,AC,AB對(duì)應(yīng)的向量表示,進(jìn)行數(shù)量積的運(yùn)算,得到關(guān)于$\overrightarrow{AP},\overrightarrow{CB}$夾角θ的余弦函數(shù)解析式,借助于有界性求最值即可.

解答 解:如圖:由已知$\overrightarrow{BP}•\overrightarrow{CQ}=({\overrightarrow{BA}+\overrightarrow{AP}})•({\overrightarrow{CA}-\overrightarrow{AP}})=\overrightarrow{BA}•\overrightarrow{CA}+\overrightarrow{AP}•({\overrightarrow{CA}-\overrightarrow{BA}})-{\overrightarrow{AP}^2}$
=$2×2×(-\frac{1}{2})+\overrightarrow{AP}•\overrightarrow{CB}-1$
=$-2+2\sqrt{3}cosθ-1≤2\sqrt{3}-3$;
故答案為:$2\sqrt{3}-3$.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,借助于余弦函數(shù)的有界性求最值;屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若關(guān)于x的不等式ax2+bx+c>0的解集為(1,2),則關(guān)于x不等式a-c(x2-x-1)-bx≥0的解集為{x|x≤-$\frac{3}{2}$或x≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.給出下列命題:
(1)從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β的關(guān)系為α=β;
(2)俯角是鉛垂線與視線所成的角,其范圍為[0,$\frac{π}{2}$];
(3)方位角與方向角其實(shí)是一樣的,均是確定觀察點(diǎn)與目標(biāo)點(diǎn)之間的位置關(guān)系;
(4)方位角大小的范圍是[0,2π),方向角大小的范圍一般是[0,$\frac{π}{2}$);
其中正確的是(1)(3)(4) (填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(x)是定義域?yàn)椋?1,1),且滿足f(x+y)=f(x)+f(y),且f(x)在(-1,1)上是減函數(shù).
(1)若f(-$\frac{1}{4}$)=-$\frac{1}{4}$,求f($\frac{1}{2}$);
(2)解不等式f(1-x)+f(1-x2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=$\sqrt{\frac{1+x}{1-x}}$+lg(3-4x+x2)的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求f(x)=4x+2x+2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.對(duì)于數(shù)列{an}(n=1,2,…),下列說(shuō)法正確的是( 。
A.{an}為首項(xiàng)為正項(xiàng)的等比數(shù)列,若a2n-1+a2n<0,則公比q<0
B.若{an}為遞增數(shù)列,則an+1>|an|
C.{an}為等差數(shù)列,若Sn+1>Sn,則{an}單調(diào)遞增
D.{an}為等差數(shù)列,若{an}單調(diào)遞增,則Sn+1>Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓臺(tái)的兩個(gè)底面面積分別為4π和25π,圓臺(tái)的高為4,求圓臺(tái)的體積與側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.直線y=x-1的斜率等于( 。
A.-1B.1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax2+bx-lnx(a,b∈R).
(1)設(shè)b=2-a,求f(x)的零點(diǎn)的個(gè)數(shù);
(2)設(shè)a>0,且對(duì)于任意x>0,f'(1)=0,試問(wèn)lna+2b是否一定為負(fù)數(shù),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案