9.在△ABC中,內角A,B,C的對邊分別為a,b,c,且滿足sinBcosA=-(2sinC+sinA)cosB.
(1)求角B的大小;
(2)求函數(shù)f(x)=2cos2x+cos(2x-B)在區(qū)間$[0,\frac{π}{2}]$上的最小值及對應的x的值.

分析 (1)根據(jù)和與差的公式和正弦定理可得角B的大;
(2)根據(jù)B角化簡f(x),x∈$[0,\frac{π}{2}]$上時,求出內層函數(shù)的取值范圍,結合三角函數(shù)的圖象和性質,即可求出f(x)的最小值和對應的x的值.

解答 解:(1)由已知sinBcosA=-(2sinC+sinA)cosB,
得:sinBcosA=-2sinCcosB-sinAcosB,
∴sinBcosA+sinAcosB=-2sinCcosB
即sinC=-2sinCcosB,
∴$cosB=-\frac{1}{2}$,
∵0<B<π
∴$B=\frac{2π}{3}$.
(2)由(1)得$B=\frac{2π}{3}$.
∴$f(x)=2cos2x+cos2xcos\frac{2π}{3}+sin2xsin\frac{2π}{3}$=$\frac{3}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x$=$\sqrt{3}sin(2x+\frac{π}{3})$
當$x∈[0,\frac{π}{2}]$上時,
可得:$2x+\frac{π}{3}∈[\frac{π}{3},\frac{4π}{3}]$,
當$2x+\frac{π}{3}=\frac{4π}{3}$時,即$x=\frac{π}{2}$時,f(x)取得最小值,即$f(\frac{π}{2})=\sqrt{3}×(-\frac{{\sqrt{3}}}{2})=-\frac{3}{2}$.
∴函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值為$-\frac{3}{2}$,此時$x=\frac{π}{2}$.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質的運用,和與差的公式和正弦定理的計算,第二問利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.數(shù)列2,-5,8,-11,…的一個通項公式為( 。
A.an=3n-1,n∈N*B.${a_n}={(-1)^n}(3n-1)$,n∈N*
C.${a_n}={(-1)^{n+1}}(3n-1)$,n∈N*D.${a_n}={(-1)^{n+1}}(3n+1)$,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{ax}{{e}^{x-1}}$(a∈R),g(x)=$\frac{{e}^{x}}$+$\frac{{e}^{-1}}{2x+{e}^{x}}$(b∈R),其中e為自然對數(shù)的底數(shù).(參考數(shù)據(jù):e2≈7.39,e${\;}^{\frac{1}{4}}$≈1.28,e${\;}^{\frac{1}{2}}$≈1.65)
(1)討論函數(shù)f(x)的單調性;
(2)若a=1時,函數(shù)y=f(2x)+g(x)有三個零點,分別記為x1、x2、x3(x1<x2<x3),證明:-2<4(x1+x2)<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=(x+a)lnx在x=1處的切線方程為y=x-1.
(Ⅰ)求a的值及f(x)的單調區(qū)間;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C,設點A(x1,y1),B(x2,y2)是曲線C上不同的兩點,如果在曲線C上存在點M(x0,y0),使得①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.試證明:函數(shù)f(x)不存在“中值相依切線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.終邊在直線y=$\sqrt{3}$x上的角的集合為{α|α=60°+n•180°,n∈Z}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}中,a1=1,且${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}({n≥2,n∈{N^*}})$.
(1)求a2,a3的值及數(shù)列{an}的通項公式;
(2)令${b_n}=\frac{{{3^{n-1}}}}{a_n}({n∈{N^*}})$,設數(shù)列{bn}的前n項和為Sn,求Sn并比較${S_{2^n}}$與n的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設不等式組$\left\{\begin{array}{l}{x+y-3<0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$表示的平面區(qū)域為Ω1,平面區(qū)域Ω2與Ω1關于直線2x+y=0對稱,對于任意的C∈Ω1,D∈Ω2,則|CD|的最小值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(sinα,cosα),$\overrightarrow$=($\sqrt{3}$,1),且$\overrightarrow{a}⊥\overrightarrow$,那么sin(α+$\frac{π}{3}$)=( 。
A.-$\frac{1}{2}$或$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.由數(shù)字1,3,4,6,x(0≤x≤9,x∈N)五個數(shù)字組成沒有重復數(shù)字的五位數(shù),所有這些五位數(shù)各位數(shù)字之和為2640,則x=8.

查看答案和解析>>

同步練習冊答案