要得到y(tǒng)=-x2+2x+3的圖象,只需將y=-x2的圖象經(jīng)過怎樣平移( 。
A、向左平移1個(gè)單位,再將所得圖象向上平移4個(gè)單位
B、向右平移1個(gè)單位,再將所得圖象向下平移4個(gè)單位
C、向左平移1個(gè)單位,再將所得圖象向下平移4個(gè)單位
D、向右平移1個(gè)單位,再將所得圖象向上平移4個(gè)單位
考點(diǎn):函數(shù)的圖象與圖象變化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:按照“左加右減,上加下減”的規(guī)律求則可.
解答: 解:函數(shù)y=-x2圖象向右平移1個(gè)單位,得拋物線y=-(x-1)2,再向上平移移4個(gè)單位可得到拋物線y=-(x-1)2+4=-x2+2x+3
故選:D.
點(diǎn)評(píng):考查了拋物線的平移以及拋物線解析式的變化規(guī)律:左加右減,上加下減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d,定義y=f″(x)是函數(shù)y=f′(x)的導(dǎo)函數(shù).若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn):任何一個(gè)三次函數(shù)既有拐點(diǎn),又有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心.根據(jù)這一發(fā)現(xiàn),對(duì)于函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,則g(
1
2013
)+g(
2
2013
)+f(
3
2013
)+…+g(
2012
2013
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
+
b
|=4,則
a
b
的最大值為(  )
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足x+y=2,則3x+3y的最小值為( 。
A、2
3
B、6
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
,則下列判斷中正確的是(  )
A、奇函數(shù),在R上為增函數(shù)
B、偶函數(shù),在R上為增函數(shù)
C、奇函數(shù),在R上為減函數(shù)
D、偶函數(shù),在R上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
的定義域構(gòu)成了集合M,則CRM=( 。
A、{x|x≥0}
B、{x|x≥
1
2
}
C、{x|x<
1
2
}
D、{x|0≤x≤
1
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式化簡(jiǎn)后的結(jié)果為cosx的是( 。
A、sin(x-
π
2
B、sin(π+x)
C、sin(x+
π
2
D、sin(π-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-2,x≤0
2x-6+lnx,x>0
的零點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將全體正整數(shù)排成一個(gè)三角形數(shù)陣:
     1
   2   3
  4   5   6
7   8   9  10

按照以上排列的規(guī)律,第8行從左向右的第5個(gè)數(shù)為( 。
A、30B、31C、32D、33

查看答案和解析>>

同步練習(xí)冊(cè)答案