(2011•天津模擬)如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)與一等軸雙曲線相交,M是其中一個(gè)交點(diǎn),并且雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn)F1,F(xiàn)2,雙曲線的焦點(diǎn)是橢圓的頂點(diǎn)A1,A2,△MF1F2的周長為4(
2
+1).設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.
分析:(Ⅰ)由題意知,確定橢圓離心率,利用橢圓的定義得到又2a+2c=4(
2
+1),解方程組即可求得橢圓的方程,等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn)可求得該雙曲線的方程;
(Ⅱ)設(shè)點(diǎn)P(x0,y0),根據(jù)斜率公式求得k1、k2,把點(diǎn)P(x0,y0)在雙曲線上,即可證明結(jié)果;
(Ⅲ)設(shè)直線AB的方程為y=k(x+2),則可求出直線CD的方程為y=
1
k
(x-2),聯(lián)立直線和橢圓方程,利用韋達(dá)定理,即可求得|AB|,|CD|,代入|AB|+|CD|=λ|AB|•|CD|,求得λ的值.
解答:(Ⅰ)解:由題意知,橢圓離心率為
c
a
=
2
2
,得a=
2
c,
又2a+2c=4(
2
+1),所以可解得a=2
2
,c=2,
所以b2=a2-c2=4,
所以橢圓的標(biāo)準(zhǔn)方程為
x2
8
+
y2
4
=1
,
所以橢圓的焦點(diǎn)坐標(biāo)為(±2,0),
因?yàn)殡p曲線為等軸雙曲線,且頂點(diǎn)是該橢圓的焦點(diǎn),
所以該雙曲線的標(biāo)準(zhǔn)方程為
x2
4
-
y2
4
=1
;
(Ⅱ)證明:設(shè)點(diǎn)P(x0,y0),
則k1=
y0
x0+2
,k2=
y0
x0-2
,
∴k1•k2=
y0
x0+2
y0
x0-2
=
y02
x02-4
,
又點(diǎn)P(x0,y0)在雙曲線上,
x02
4
-
y02
4
=1
,即y02=x02-4,
∴k1•k2=
y02
x02-4
=1;
(Ⅲ)解:假設(shè)存在常數(shù)λ,使得得|AB|+|CD|=λ|AB|•|CD|恒成立,
則由(II)知k1•k2=1,
∴設(shè)直線AB的方程為y=k(x+2),則直線CD的方程為y=
1
k
(x-2),
y=k(x+2)與橢圓方程聯(lián)立,消y得:(2k2+1)x2+8k2x+8k2-8=0,
設(shè)A(x1,y1),B(x2,y2),
則由韋達(dá)定理得,x1+x2=
-8k2
1+2k2
,x1•x2=
8k2-8
1+2k2
,
∴|AB|=
1+k2
|x1-x2|=
4
2
(1+k2)
1+2k2

同理|CD|=
4
2
(1+k2)
2+k2

∵|AB|+|CD|=λ|AB|•|CD|,
∴λ=
1
|AB|
+
1
|CD|
=
3+3k2
4
2
(1+k2)
=
3
2
8

∴存在常數(shù)λ=
3
2
8
,使得|AB|+|CD|=λ|AB|•|CD|恒成立.
點(diǎn)評(píng):本題考查橢圓與雙曲線的標(biāo)準(zhǔn)方程、直線與圓錐曲線的位置關(guān)系,考查了學(xué)生綜合運(yùn)用知識(shí)解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)命題“函數(shù)y=f(x)(x∈M)是偶函數(shù)”的否定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則y=f(x)的圖象可由函數(shù)g(x)=sinx的圖象(縱坐標(biāo)不變)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會(huì)的干部競選.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)設(shè)
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0),a>0,b>0
,O為坐標(biāo)原點(diǎn),若A、B、C三點(diǎn)共線,則
1
a
+
2
b
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)已知函數(shù)f(x)=sinωx-
3
cosωx(ω>0)的圖象與x軸的兩個(gè)相鄰交點(diǎn)的距離等于
π
2
,若將函數(shù)y=f(x)的圖象向左平移
π
6
個(gè)單位得到函數(shù)y=g(x)的圖象,則y=g(x)是減函數(shù)的區(qū)間為(  )

查看答案和解析>>

同步練習(xí)冊答案