如圖是函數(shù)y=Asin(ωx+φ)+2的圖象的一部分,它的振幅、周期、初相各是( )
A.A=3,T=,φ=-
B.A=1,T=,φ=-
C.A=1,T=,φ=-
D.A=1,T=,φ=-
【答案】分析:根據(jù)相鄰最低與最高點(diǎn)的橫坐標(biāo)的差值是T的一半,求出T,再根據(jù)T=求出ω,再根據(jù)最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)的差值是振幅的兩倍,求出振幅,最后代入點(diǎn)()求出φ
解答:解:由圖知周期T=,A=1,
又因?yàn)門=,知ω=;
再將點(diǎn)()代入y=Asin(ωx+φ)+2
計(jì)算求出φ=,
故選B.
點(diǎn)評(píng):此題容易對(duì)振幅和初相產(chǎn)生錯(cuò)誤
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=Asin(ωx+φ)(A<0,ω>0,|φ|≤
π
2
)圖象的一部分.為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)(  )
A、向左平移
π
3
個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變
B、向左平移
π
3
個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C、向左平移
π
6
個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變
D、向左平移
π
6
個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)的圖象的一段,它的解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
在一個(gè)周期內(nèi)的圖象,M、N分別是最大、最小值點(diǎn),且
OM
ON
,則A•ω的值為( 。
A、
π
6
B、
2
π
6
C、
5
π
4
D、
7
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
在一個(gè)周期內(nèi)的圖象,M、N分別是其最高點(diǎn)、最低點(diǎn),MC⊥x軸,且矩形MBNC的面積為
7
π
12
,則A•ω的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+?)(x∈R,A>0,ω>0,0<?<
π
2
)在區(qū)間[-
π
6
6
]
上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx(x∈R)的圖象上的所有的點(diǎn)( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案