【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)求平面與平面所成銳二面角的余弦值;
(2)點是線段上的動點,當直線與所成的角最小時,求線段的長.
【答案】(1);(2).
【解析】
(1)以為原點,以分別為軸建立空間直角坐標系,利用平面的法向量可解得結(jié)果;
(2)向量與夾角的余弦值的絕對值的最大值等價于直線與所成的角最小,利用向量法可解得結(jié)果.
(1)因為平面,所以,,又,
所以以為原點,以分別為軸建立如圖所示的空間直角坐標系:
所以,,,,,
因為,,,所以平面,
所以是平面的一個法向量,.
因為.
設平面的法向量為,則,
即,令,解得.
所以是平面的一個法向量,從而,
所以平面與平面所成的銳二面角的余弦值為.
(2) 因為,設,
又,則,
又,
從而,
設,
則,
當且僅當,即時,的最大值為.
因為在上是減函數(shù),所以此時直線與所成角取得最小值.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某校高二學生的身高是否與性別有關(guān),隨機調(diào)查該校64名高二學生,得到2×2列聯(lián)表如表:
男生 | 女生 | 總計 | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計 | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別無關(guān)”
B.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別有關(guān)”
C.有99.9%的把握認為“身高與性別無關(guān)”
D.有99.9%的把握認為“身高與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;
(3)若函數(shù)對恒成立,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的一個頂點為,且過拋物線的焦點F.
(1)求橢圓C的方程及離心率;
(2)設點Q是橢圓C上一動點,試問直線上是否存在點P,使得四邊形PFQB是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.
(1)求直線的直角坐標方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第35屆牡丹花會期間,我班有5名學生參加志愿者服務,服務場所是王城公園和牡丹公園.
(1)若學生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?
(2)每名學生都被隨機分配到其中的一個公園,設分別表示5名學生分配到王城公園和牡丹公園的人數(shù),記,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣教育局為了檢查本縣甲、乙兩所學校的學生對安全知識的學習情況,在這兩所學校進行了安全知識測試,隨機在這兩所學校各抽取20名學生的考試成績作為樣本,成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀,統(tǒng)計結(jié)果如下圖:
甲校 乙校
(1)從乙校成績優(yōu)秀的學生中任選兩名,求這兩名學生的成績恰有一個落在內(nèi)的概率;
(2)由以上數(shù)據(jù)完成下面列聯(lián)表,并回答能否在犯錯的概率不超過0.1的前提下認為學生的成績與兩所學校的選擇有關(guān)。
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
總計 |
參考數(shù)據(jù) | P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | span>3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com