已知f(x)=x5+ax3+bx-8且f(-2)=-6,那么f(2)=


  1. A.
    0
  2. B.
    -10
  3. C.
    -18
  4. D.
    -26
B
分析:利用函數(shù)的奇偶性進行整體求值.
解答:因為f(x)=x5+ax3+bx-8,
所以f(x)+8=x5+ax3+bx為奇函數(shù),
所以f(-2)+8=-[f(2)+8],
即-6+8=-f(2)-8,
解得f(2)=-10.
故選B.
點評:本題主要考查函數(shù)奇偶性的應用,構造奇函數(shù)是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

14、已知f(x)=x5+ax3+bx-8且f(-2)=10,那么f(2)=
-26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x5-a,且f(-1)=0,則f-1(1)的值是( 。
A、0
B、1
C、-1
D、
52

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x5+x3且f(m)=10,那么f(-m)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x5+ax3+bx-2且f(-2)=m,那么f(2)+f(-2)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x5+ax3+bx-8且f(-2)=-6,那么f(2)=( 。

查看答案和解析>>

同步練習冊答案