設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),對(duì)任意實(shí)數(shù)t都有f(2+t)=f(2-t)成立,那么在函數(shù)值f(-1)、f(0)、f(2)、f(5)中,最小的一個(gè)不可能是( 。
A、f(5)B、f(2)
C、f(-1)D、f(1)
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,二次函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,顯然,直線x=2離對(duì)稱軸最近,直線x=-1離對(duì)稱軸最遠(yuǎn),而直線x=1離對(duì)稱軸既不最近、也不最遠(yuǎn),由此可得結(jié)論.
解答: 解:∵函數(shù)f(x)=ax2+bx+c(a≠0),對(duì)任意實(shí)數(shù)t都有f(2+t)=f(2-t)成立,
∴二次函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,
顯然,直線x=2離對(duì)稱軸最近,直線x=-1離對(duì)稱軸最遠(yuǎn),
而直線x=1離對(duì)稱軸既不最近、也不最遠(yuǎn),
故函數(shù)值f(-1)、f(0)、f(2)、f(5)中,最小的一個(gè)不可能是f(1),
故選:D.
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2+x在(0,+∞)上單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐的頂點(diǎn)為P,PA,PB,PC為三條棱,且PA,PB,PC兩兩垂直,又PA=2,PB=3,PC=4,則三棱錐P-ABC的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C51+C52+C53+C54+C55=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2x+a)5的展開式中,x2的系數(shù)等于40,則
a
0
(ex+2x)dx等于(  )
A、eB、e-1C、1D、e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是兩條不同的直線,α,β是兩個(gè)不同的平面( 。
A、若a∥b,a∥α,則b∥α
B、若a⊥b,a⊥α,b⊥β,則α⊥β
C、若α⊥β,a⊥β,則a∥α
D、若α∥β,a∥α,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)復(fù)數(shù)z=
1+i
1-i
等于( 。
A、1B、-1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=(m-1)x2+2mx+3為偶函數(shù),則f(x)在(-5,-2)上的單調(diào)性是(  )
A、增函數(shù)B、減函數(shù)
C、先增后減D、先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,CD⊥平面PAD,PA⊥AD,PA=2,E分別PC的中點(diǎn),點(diǎn)P在棱PA上.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求三棱錐E-BDF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案