16.橫梁的強(qiáng)度和它的矩形橫斷面的寬成正比,并和矩形橫斷面的高的平方成正比,要將直徑為d的圓木鋸成強(qiáng)度最大的橫梁,則橫斷面的高和寬分別為( 。
A.$\sqrt{3}$d,$\frac{{\sqrt{3}}}{3}$dB.$\frac{{\sqrt{3}}}{3}$d,$\frac{{\sqrt{6}}}{3}$dC.$\frac{{\sqrt{6}}}{3}$d,$\frac{{\sqrt{3}}}{3}$dD.$\frac{{\sqrt{6}}}{3}$d,$\sqrt{3}$d

分析 據(jù)題意橫梁的強(qiáng)度同它的斷面高的平方與寬x的積成正比(強(qiáng)度系數(shù)為k,k>0)建立起強(qiáng)度函數(shù),求出函數(shù)的定義域,再利用求導(dǎo)的方法求出函數(shù)取到最大值時(shí)的橫斷面的值.

解答 解:如圖所示,設(shè)矩形橫斷面的寬為x,高為y.由題意知,當(dāng)xy2取最大值時(shí),橫梁的強(qiáng)度最大.
∵y2=d2-x2,
∴xy2=x(d2-x2)(0<x<d).
令f(x)=x(d2-x2)(0<x<d),
得f′(x)=d2-3x2,令f′(x)=0,
解得x=$\frac{\sqrt{3}}{3}$d或x=-$\frac{\sqrt{3}}{3}$d(舍去).
當(dāng)0<x<$\frac{\sqrt{3}}{3}$d,f′(x)>0;當(dāng)$\frac{\sqrt{3}}{3}$d<x<d時(shí),f′(x)<0,
因此,當(dāng)x=$\frac{\sqrt{3}}{3}$d時(shí),f(x)取得極大值,也是最大值.
∴y=$\frac{\sqrt{6}}{3}$d
故選:C.

點(diǎn)評(píng) 考查據(jù)實(shí)際意義建立相關(guān)的函數(shù),再根據(jù)函數(shù)的特征選擇求導(dǎo)的方法來求最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$12+4\sqrt{2}$B.$16+4\sqrt{2}$C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某幾何體由相同的n個(gè)小正方體構(gòu)成,其三視圖如圖所示,則n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|1<x-1≤4},B={x|x<a}.
(Ⅰ)當(dāng)a=3時(shí),求A∩B;
(Ⅱ)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示在圓錐PO中,已知PO=$\sqrt{2}$,⊙O的直徑AB=2,C是$\widehat{AB}$上的點(diǎn)(點(diǎn)C不與AB重合),D為AC中點(diǎn).
(Ⅰ)證明:平面POD⊥平面PAC;
(Ⅱ)求圓錐PO的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)滿足:對(duì)任意α,β∈R,都有f(α•β)=α•f(β)+β•f(α),且f(2)=2,數(shù)列{an}滿足an=f(2n)(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{{a}_{n}}{n}$($\frac{{a}_{n}}{n}$-1),cn=$\frac{_{n}}{_{n+1}}$,記Tn=$\frac{1}{n}$(c1+c2+…+cn)(n∈N+).問:是否存在正整數(shù)M,使得當(dāng)n∈N+時(shí),不等式Tn<$\frac{M}{584}$恒成立?若存在,求出M的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a,b是任意實(shí)數(shù),且a<b,則(  )
A.a2<b2B.$\frac{a}>1$C.lg(b-a)>0D.($\frac{1}{3}$)a>($\frac{1}{3}$)b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某中學(xué)號(hào)召學(xué)生在今年暑假期間至少參加一次社會(huì)公益活動(dòng)(以下簡(jiǎn)稱活動(dòng)).該校合唱團(tuán)共有100名學(xué)生,他們參加活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(Ⅰ)求合唱團(tuán)學(xué)生參加活動(dòng)的人均次數(shù);
(Ⅱ)從合唱團(tuán)中任意選兩名學(xué)生,求他們參加活動(dòng)次數(shù)恰好相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.圓心為(1,2)且過原點(diǎn)的圓的方程是(  )
A.(x-1)2+(y-2)2=5B.(x+1)2+(y+2)2=5C.(x-1)2+(y-2)2=3D.(x+1)2+(y+2)2=3

查看答案和解析>>

同步練習(xí)冊(cè)答案