精英家教網 > 高中數學 > 題目詳情
設不等式組
x≥1
x-2y+3≥0
y≥x
,所表示的平面區(qū)域是
A
 
1
,平面區(qū)域
A
 
2
A
 
1
關于直線3x-4y-9=0對稱,對于
A
 
1
中任意點M與A2中任意點N,|MN|的最小值為( 。
分析:根據已知約束條件畫出約束條件的可行域A1,根據對稱的性質,不難得到:當M點距對稱軸的距離最近時,|MN|有最小值.
解答:解:由題意知,所求的|MN|的最小值,即為區(qū)域A1中的點到直線3x-4y-9=0的距離的最小值的兩倍,
畫出已知不等式表示的平面區(qū)域,如圖所示,
可看出點B(1,1)到直線3x-4y-9=0的距離最小,此時d=
|3-4-9|
5
=2
故|MN|的最小值為4,
故選D
點評:利用線性規(guī)劃解平面上任意兩點的距離的最值,關鍵是要根據已知的約束條件,畫出滿足約束約束條件的可行域,再去分析圖形,根據圖形的性質、對稱的性質等找出滿足條件的點的坐標,代入計算即可求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設不等式組
x≥1
x-2y+3≥0
y≥x
所表示的平面區(qū)域是Ω1,平面區(qū)域是Ω2與Ω1關于直線3x-4y-9=0對稱,對于Ω1中的任意一點A與Ω2中的任意一點B,|AB|的最小值等于(  )
A、
28
5
B、4
C、
12
5
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

設不等式組
x≥1
x-2y+3≥0
y≥x
所表示的平面區(qū)域是Ω1,平面區(qū)域Ω2與Ω1關于原點對稱,對于Ω1中的任意點A與Ω2中的任意點B,|AB|的最小值等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是不等式組
x,y≥0
x-y≥-1
x+y≤3
表示的平面區(qū)域內的任意一點,向量
m
=(1,1),
n
=(2,1)
,若
OP
m
n
,則2λ+μ的最大值為
5
5

查看答案和解析>>

科目:高中數學 來源: 題型:

設不等式組
x≥1
x-2y+3≥0
y≥x
所表示的平面區(qū)域是Ω1,平面區(qū)域是Ω2與Ω1關于直線3x-4y-9=0對稱,對于Ω1中的任一點A與Ω2中的任一點B,AB的最小值為
 

查看答案和解析>>

同步練習冊答案