(12分)

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.

   (1)求動(dòng)點(diǎn)E的軌跡方程;

           (2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

 

【答案】

解:(1)由題知    (2分)

    又

點(diǎn)E的軌跡是以A,C為焦點(diǎn),長軸長為4的橢圓,

E的軌跡方程為                            (4分)

   (2)設(shè),PQ的中點(diǎn)為

       將直線聯(lián)立得

    ,即  ①          

    又

    依題意有,整理得          ②  (6分)

    由①②可得,

                                 (7分)

    設(shè)O到直線的距離為,則

   

                  (10分)

    當(dāng)時(shí),的面積取最大值1,此時(shí),

    直線方程為        

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆山西大學(xué)附中高三第二學(xué)期高三第一次模擬測(cè)試數(shù)學(xué)試卷 題型:解答題

(12分)
已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河南省高二下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E。

(1)求動(dòng)點(diǎn)E的軌跡方程;

(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年哈爾濱三中、東北育才、大連育明、天津耀華四校高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年東北育才、大連育明高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案