分析 (1)根據(jù)定義法,證明函數(shù)的單調(diào)性即可;
(2)根據(jù)函數(shù)在區(qū)間[2,6]上是減函數(shù),故最大值在左端點取到,最小值在右端點取到,求出兩個端點的值即可.
解答 (1)證明:設x1、x2是區(qū)間[2,6]上的任意兩個實數(shù),且x1<x2,則
f(x1)-f(x2)=$\frac{2}{{x}_{1}-1}$-$\frac{2}{{x}_{2}-1}$=$\frac{2{(x}_{2}{-x}_{1})}{{(x}_{1}-1){(x}_{2}-1)}$,
由2<x1<x2<6,得x2-x1>0,(x1-1)(x2-1)>0,
于是f(x1)-f(x2)>0,即f(x1)>f(x2).
所以函數(shù)y=$\frac{2}{x-1}$是區(qū)間[2,6]上的減函數(shù);
(2)解:由(1)得:
函數(shù)y=$\frac{2}{x-1}$在區(qū)間的兩個端點上分別取得最大值與最小值,
即當x=2時,ymax=2;
當x=6時,ymin=$\frac{2}{5}$.
點評 本題考查函數(shù)的單調(diào)性,用單調(diào)性求最值是單調(diào)性的最重要的應用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$+π | B. | $\frac{2\sqrt{3}}{3}$+2π | C. | 2 $\sqrt{3}$+2π | D. | 2 $\sqrt{3}$+π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com