分析 由已知利用二倍角的正切函數(shù)公式可求tan2α,利用兩角和的正切函數(shù)公式可求tan(2α+β),結(jié)合2α+β的范圍,由正切函數(shù)的圖象和性質(zhì)即可得解2α+β的值.
解答 解:∵tanα=-$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,$\frac{π}{2}$<α<π,-π<β<0,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{3}{4}$,tan(2α+β)=$\frac{tan2α+tanβ}{1-tan2αtanβ}$=$\frac{(-\frac{3}{4})+(-\frac{1}{7})}{1-(-\frac{3}{4})×(-\frac{1}{7})}$=-1,
又∵$\frac{3π}{2}$<2α<2π,-$\frac{π}{2}$<β<0,可得:2α+β∈(π,2π),
∴2α+β=$\frac{7π}{4}$.
故答案為:$\frac{7π}{4}$.
點(diǎn)評(píng) 本題主要考查了二倍角的正切函數(shù)公式,兩角和的正切函數(shù)公式,正切函數(shù)的圖象和性質(zhì)在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,求出tan2α的值的關(guān)鍵.注意角的范圍.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河南八市高二文上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題
在中,若,,,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -2 | C. | 2 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=sin({\frac{x}{2}+\frac{π}{6}})$ | B. | $y=cos({2x+\frac{π}{3}})$ | C. | $y=sin({2x-\frac{π}{6}})$ | D. | $y=cos({2x-\frac{π}{6}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4π}{3}或\frac{2π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | 以上答案都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com