已知定義在R上的函數(shù)f(x)=x2(ax-3)+2,其中a為常數(shù).
(1)若x=1是函數(shù)y=f(x)的一個(gè)極值點(diǎn),求a的值;
(2)若函數(shù)y=f(x)在區(qū)間(-1,0)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a>0時(shí),若g(x)=f(x)+f′(x),(其中x∈[0,2]),在x=0處取得最大值,求實(shí)數(shù)a的取值范圍.
(1)∵f(x)=ax3-3x2+2,
∴f'(x)=3ax2-6x=3x(ax-2).
∵x=1是f(x)的一個(gè)極值點(diǎn),
∴f'(1)=0,解得a=2
(2)①當(dāng)a=0時(shí),
f(x)=-3x2在區(qū)間(-1,0)上是增函數(shù)
∴a=0符合題意;
②當(dāng)a≠0時(shí),f'(x)=3ax(x-
2
a
),令f'(x)=0得:x1=0,x2=
2
a
,
當(dāng)a>0時(shí),對(duì)任意x∈(-1,0),f'(x)>0,
∴a>0 (符合題意)
當(dāng)a<0時(shí),當(dāng)x∈(
2
a
,2)時(shí),f'(x)>0,∴
2
a
≤-1,∴-2≤a<0(符合題意),
綜上所述,a≥-2.
(3)a>0,g(x)=ax3+(3a-3)x2-6x+2,x∈[0,2].
g'(x)=3ax2+2(3a-3)x-6=3[ax2+2(a-1)x-2],
令g'(x)=0,即ax2+2(a-1)x-2=0(*),顯然有△=4a2+4>0.
設(shè)方程(*)的兩個(gè)根為x1,x2,由(*)式得 x1x2=-
2
a
<0,不妨設(shè)x1<0<x2
當(dāng)0<x2<2時(shí),g(x2)為極小值
所以g(x)在[0,2]上的最大值只能為g(0)或g(2)
當(dāng)x2≥2時(shí),由于g(x)在[0,2]上是單調(diào)遞減函數(shù)
所以最大值為g(0),所以在[0,2]上的最大值只能為g(0)或g(2)
又已知g(x)在x=0處取得最大值
所以g(0)≥g(2)即0≥20a-22,解得a≤
6
5
,又因?yàn)閍>0,所以a∈(0,
6
5
]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿(mǎn)足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線(xiàn)x=-1對(duì)稱(chēng),則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案