精英家教網 > 高中數學 > 題目詳情

【題目】已知點為拋物線的焦點,為拋物線上三點,且點在第一象限,直線經過點與拋物線在點處的切線平行,點的中點.

(1)證明:軸平行;

(2)求面積的最小值.

【答案】(1)見解析.

(2)16.

【解析】

(1)設出A,B,D三點坐標,根據kBD=y′列方程.根據根與系數的關系求出M的橫坐標即可;

(2)求出直線BD的方程,求出AMB到直線AM的距離,則SABD=2SABM,求出S關于xA的函數,利用基本不等式求出函數的最小值.

(1)證明:設,.

,又,所以,即,

軸平行.

(2)法一:由共線可得,

所以,

,所以,即.

直線的方程為,

所以.

由(1)得

當且僅當,即時等號成立,故的最小值為16.

法二:直線的方程為,.

,

.

設直線,代入,

,故時等號成立).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線的參數方程為為參數,且),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.

(1)將曲線的參數方程化為普通方程,并將曲線的極坐標方程化為直角坐標方程;

(2)求曲線與曲線交點的極坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.

(1)若直線的斜率為,判斷直線與曲線的位置關系;

(2)求交點的極坐標().

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1)求證上遞增;

2)若上的值域是,求實數a的取值范圍;

3)當上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)若,求函數的單調區(qū)間;

(2)若,則當時,函數的圖象是否總在直線上方?請寫出判斷過程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某人經營一個抽獎游戲,顧客花費元錢可購買一次游戲機會,每次游戲中,顧客從裝有個黑球,個紅球,個白球的不透明袋子中依次不放回地摸出個球(除顏色外其他都相同),根據摸出的球的顏色情況進行兌獎.顧客獲得一等獎、二等獎、三等獎、四等獎時分別可領取獎金元,元、元、元.若經營者將顧客摸出的個球的顏色情況分成以下類別:個黑球,個紅球;個紅球;:恰有個白球;:恰有個白球;個白球,且經營者計劃將五種類別按照發(fā)生機會從小到大的順序分別對應中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個層次.

(1)請寫出一至四等獎分別對應的類別(寫出字母即可);

(2)若經營者不打算在這個游戲的經營中虧本,求的最大值;

(3)若,當顧客摸出的第一個球是紅球時,求他領取的獎金的平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線的參數方程為為參數),在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)求曲線和直線在該直角坐標系下的普通方程;

(2)動點在曲線上,動點在直線上,定點的坐標為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知表示兩個不同的平面, 表示兩條不同直線,對于下列兩個命題

①若,”是“”的充分不必要條件;

②若,”是“”的充要條件.判讀正確的是(

A. ①②都是真命題 B. ①是真命題,②是假命題

C. ①是假命題,②是真命題 D. ①②都是假命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某兒童樂園在六一兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數.設兩次記錄的數分別為x,y.獎勵規(guī)則如下:

,則獎勵玩具一個;

,則獎勵水杯一個;

其余情況獎勵飲料一瓶.

假設轉盤質地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.

)求小亮獲得玩具的概率;

)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

同步練習冊答案