【題目】一個幾何體的三視圖如圖所示(單位長度為:cm):
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
【答案】
(1)解:由三視圖知:幾何體是正四棱錐與正方體的組合體,
其中正方體的棱長為4,正四棱錐的高為2,
∴幾何體的體積V=43+ ×42×2=
(2)解:正四棱錐側(cè)面上的斜高為2 ,
∴幾何體的表面積S=5×42+4× ×4×2 =
【解析】(1)幾何體是正四棱錐與正方體的組合體,根據(jù)三視圖判斷正方體的棱長及正四棱錐的高,代入棱錐與正方體的體積公式計算;(2)利用勾股定理求出正四棱錐側(cè)面上的斜高,代入棱錐的側(cè)面積公式與正方體的表面積公式計算.
【考點精析】利用由三視圖求面積、體積對題目進行判斷即可得到答案,需要熟知求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個側(cè)面的面積.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題錯誤的是( )
A. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
B. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
C. 如果平面平面,平面平面, ,那么平面
D. 如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=sin(2ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且函數(shù)圖象關(guān)于點(﹣ ,0)對稱,則函數(shù)的解析式為( )
A.y=sin(4x+ )
B.y=sin(2x+ )
C.y=sin(2x+ )
D.y=sin(4x+ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,已知在菱形中, , 為的中點,現(xiàn)將四邊形沿折起至,如圖2.
(1)求證: 面;
(2)若二面角的大小為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是等邊三角形,邊長為4, 邊的中點為,橢圓以, 為左、右兩焦點,且經(jīng)過、兩點。
(1)求該橢圓的標準方程;
(2)過點且軸不垂直的直線交橢圓于, 兩點,求證:直線與的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A、B兩點,且kOAkOB=﹣,判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的“星級賣場”.
(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數(shù);
(2)若在這10個賣場中,乙型號電視機銷售量的平均數(shù)為26.7,求a>b的概率;
(3)若a=1,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達到最值.
(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n﹣5an﹣85,n∈N+ .
(1)求an .
(2)求數(shù)列{Sn}的通項公式,并求出n為何值時,Sn取得最小值?并說明理由.(參考數(shù)據(jù):lg 2≈0.3,lg 3≈0.48).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com