15.已知α⊥β,下列命題正確個數(shù)有(  )
①α內(nèi)的已知直線必垂直于β內(nèi)的任意直線;
②α內(nèi)的已知直線必垂直于β內(nèi)的無數(shù)條直線;
③α內(nèi)的任一直線必垂直于β.
A.3B.2C.1D.0

分析 由α⊥β,結(jié)合面面垂直的性質(zhì)定理是α內(nèi)的已知直線與β內(nèi)的直線相交、平行或異面,α內(nèi)的已知直線必垂直于β內(nèi)的無數(shù)條直線,α內(nèi)的任一直線與β相交、平行或在β內(nèi).

解答 解:由α⊥β,知:
①α內(nèi)的已知直線與β內(nèi)的直線相交、平行或異面,故①錯誤;
②由面面垂直的性質(zhì)定理得α內(nèi)的已知直線必垂直于β內(nèi)的無數(shù)條直線,故②正確;
③α內(nèi)的任一直線與β相交、平行或在β內(nèi),故③錯誤.
故選:C.

點評 本題考查直線與平面的位置關(guān)系的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為提倡市民節(jié)約用水,中國水利部確定每年的3月22日至28日為“中國水周”,某市統(tǒng)計局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如圖所示.
將月用水量落入各組的頻率視為概率,并假設(shè)每月的用水量相互獨立.
(1)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此,估計該地家庭的平均用水量及方差;
(2)求在未來連續(xù)3個月,有連續(xù)2個月的月用水量都不低于8噸,且另一個月的月用水量低于4噸的概率;
(3)①求月用水量低于8噸的概率;
②用X表示在未來3個月里用水量低于8噸的月數(shù),求隨機變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知D,E,F(xiàn)分別是△ABC三邊AB,BC,CA的中點,則下列等式不成立的是(  )
A.$\overrightarrow{FD}$+$\overrightarrow{DA}$=$\overrightarrow{FA}$B.$\overrightarrow{FD}$+$\overrightarrow{DE}$+$\overrightarrow{EF}$=0C.$\overrightarrow{DE}$+$\overrightarrow{DA}$=$\overrightarrow{EC}$D.$\overrightarrow{DA}$+$\overrightarrow{DE}$=$\overrightarrow{DF}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線C的頂點在原點,焦點F在x軸的正半軸上,若拋物線上一動點P到A(2,$\frac{3}{2}$),F(xiàn)兩點的距離之和的最小值為4,求拋物線C的方程及其準線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow$|=5,$\overrightarrow{a}$•$\overrightarrow$=5,則|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若實數(shù)x、y滿足$\left\{\begin{array}{l}{x-y+5≤0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.$且z=2x+4y的最小值為-14,則常數(shù)k的值為( 。
A.10B.$\frac{19}{3}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列四個命題:①若a∥b,a∥α,則b∥α;②若a∥α,b?α,則α∥b;③若a∥α,則a平行于α內(nèi)所有的直線;④若a∥α,a∥b,b?α,則b∥α.其中正確命題的序號是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ln|x|-cosx,則f(-3),f($\frac{π}{2}$),f(π)的大小關(guān)系是( 。
A.f($\frac{π}{2}$)<f(-3)<f(π)B.f($\frac{π}{2}$)<f(π)<f(-3)C.f(-3)<f($\frac{π}{2}$)<f(π)D.f(-3)<f(π)<f($\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知角α終邊上點的坐標(6,8),求sinα、cosα、tanα的值.

查看答案和解析>>

同步練習(xí)冊答案