已知的角A、B、C所對的邊分別是,
設(shè)向量,
(Ⅰ)若,求證:為等腰三角形;
(Ⅱ)若,邊長,,求的面積.

(Ⅰ)利用正弦定理由角化邊可以得到,命題即得證.(Ⅱ)

解析試題分析:證明:(1)∵m∥n∴asinA=bsinB即a• .其中R為△ABC外接圓半徑.∴a=b∴△ABC為等腰三角形.(2)由題意,m•p=0∴a(b-2)+b(a-2)=0∴a+b=ab,由余弦定理4=a2+b2-2ab•cos∴4=a2+b2-ab=(a+b)2-3ab,∴ab2-3ab-4=0,∴ab=4或ab=-1(舍去),∴SABC= absinC,= ×4×sin=
考點:向量
點評:向量是數(shù)學(xué)中重要和基本的概念之一,它既是代數(shù)的對象,又是幾何的對象,作為代數(shù)的對象,向量可以運(yùn)算,而作為幾何對象,向量有方向,可以刻畫直線、平面切線等幾何對象;向量有長度,可以刻畫長度等幾何度量問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)  
(Ⅰ)求函數(shù)的最小正周期和值域;
(Ⅱ)記的內(nèi)角A、B、C的對邊分別是a,b,c,若求角C的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

 中,已知求∠A,∠C,邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

△ABC中,是A,B,C所對的邊,S是該三角形的面積,且 
(1)求∠B的大。
(2)若=4,,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角對邊的邊長分別是,已知,
(1)若的面積等于,求
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,若
(1)求證;
(2)若的平分線交,且,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

風(fēng)景秀美的京娘湖畔有四棵高大的銀杏樹,記做、、,欲測量、兩棵樹和、兩棵樹之間的距離,但湖岸部分地方圍有鐵絲網(wǎng)不能靠近,現(xiàn)在可以方便的測得、兩點間的距離為米,如圖,同時也能測量出,,,則、兩棵樹和、兩棵樹之間的距離各為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知,, 求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個內(nèi)角、的對邊分別為、、,且
(Ⅰ) 求的值;
(Ⅱ)若,求周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案