分析:(I)為等差數(shù)列的證明,由
an+1=(n∈N*)取倒數(shù),得到
-=4,即b
n+1-b
n=4,故數(shù)列{b
n}是以1為首項(xiàng),4為公差的等差數(shù)列,易求通項(xiàng)公式.
(II)為數(shù)列的求和,由
cn=bn•2n可知數(shù)列的每一項(xiàng)是由一個等差數(shù)列與一個等比數(shù)列對應(yīng)項(xiàng)的乘積構(gòu)成,故可由錯位相減法求和.
解答:解:(Ⅰ)∵
an+1=,∴
=4+,即
-=4,∴b
n+1-b
n=4.
∴數(shù)列{b
n}是以1為首項(xiàng),4為公差的等差數(shù)列.∴
=bn=1+4(n-1)=4n-3,
∴數(shù)列{a
n}的通項(xiàng)公式為
an=.
(Ⅱ)由(Ⅰ)知
cn=bn•2n=(4n-3)2
n,
∴
Sn=1×21+5×22+9×23+…+(4n-3)•2n…①
同乘以2得,
2Sn=1×22+5×23+9×24+…+(4n-3)•2n+1…②
②-①得,
-Sn=2-(4n-3)2n+1+4×(22+23+24+…+2n)=
2-(4n-3)2n+1+=2-(4n-3)2
n+1+16×2
n-1-16
=-14+2
n+1×(4-4n+3)=-14+(7-4n)2
n+1∴數(shù)列{c
n}的前n項(xiàng)和
Sn=(4n-7)•2n+1+14 點(diǎn)評:本題為數(shù)列的綜合問題:(1)為等差數(shù)列的證明,關(guān)鍵是證明bn+1-bn為與n無關(guān)的常數(shù).(2)為數(shù)列的求和,由錯位相減法求和可得結(jié)果,注意運(yùn)算過程中的等比數(shù)列的求和.