分析 (Ⅰ)由定義域?yàn)镽,f(-x)=2-x-2x=-f(x),可判斷函數(shù)f(x)的奇偶性;
(Ⅱ)利用函數(shù)單調(diào)性的定義,可判斷出f(x)在(-∞,+∞)上單調(diào)遞增,再由不等式f[g(x)]+f(-m2+2m+2)≤0對(duì)于一切x∈[-1,1]恒成立等價(jià)轉(zhuǎn)化為g(x)≤m2-2m-2對(duì)一切x∈[-1,1]恒成立,從而可求m的取值范圍.
解答 解:(Ⅰ)∵函數(shù)f(x)定義域?yàn)镽且f(-x)=2-x-2x=-f(x),
∴f(x)為奇函數(shù)…(4分)
(Ⅱ)在(-∞,+∞)上任取兩個(gè)不等的實(shí)數(shù)x1,x2,不妨設(shè)x1<x2,則
$\left.\begin{array}{l}{f({x}_{2})-f({x}_{1})=({2}^{{x}_{2}}-{2}^{-{x}_{2}})}\end{array}\right.$-$\left.\begin{array}{l}{({2}^{{x}_{1}}-{2}^{-{x}_{1}})=({2}^{{x}_{2}}-{2}^{{x}_{1}})+[{(\frac{1}{2})}^{{x}_{1}}-{(\frac{1}{2})}^{{x}_{2}}]}\end{array}\right.$
$\left.\begin{array}{l}{\left.\begin{array}{l}{\;}\\{=({2}^{{x}_{2}}-{2}^{{x}_{1}})(1+\frac{1}{{2}^{{x}_{1}}{2}^{{x}_{2}}})}\end{array}\right.}\end{array}\right.$,
由于x1<x2,所以${2^{x_2}}-{2^{x_1}}>0,1+\frac{1}{{{2^{x_1}}{2^{x_2}}}}>0$,即f(x2)>f(x1),
函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增…(6分)
由f(g(x))+f(-m2+2m+2)≤0,
得f(g(x))≤-f(-m2+2m+2),
即f(g(x))≤f(m2-2m-2),
又因?yàn)楹瘮?shù)f(x)在(-∞,+∞)上單調(diào)遞增,所以g(x)≤m2-2m-2對(duì)一切x∈[-1,1]恒成立,
即(g(x))max≤m2-2m-2,….(8分)
g(x)=2x+1-22x=-(2x-1)2+1,
∵-1≤x≤1,∴$\frac{1}{2}$≤2x≤2,
故g(x)=-(2x-1)2+1≤1…(10分)
即g(x)max=1,所以m2-2m-2≥1,所以m≥3或m≤-1…(12分)
點(diǎn)評(píng) 本題考查函數(shù)恒成立問(wèn)題,考查函數(shù)單調(diào)性的判定與指數(shù)函數(shù)單調(diào)性的應(yīng)用,突出考查函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想的綜合運(yùn)用,考查邏輯思維與運(yùn)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k=1且$\overrightarrow{c}$與$\overrightarrow5ywhr0d$同向 | B. | k=1且$\overrightarrow{c}$與$\overrightarrows0v2amj$反向 | C. | k=-1且$\overrightarrow{c}$與$\overrightarrownddbca0$同向 | D. | k=-1且$\overrightarrow{c}$與$\overrightarrowoeqo07h$反向 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)在區(qū)間[a,b]上不可能有零點(diǎn) | |
B. | 函數(shù)f(x)在區(qū)間[a,b]上一定有零點(diǎn) | |
C. | 若函數(shù)f(x)在區(qū)間[a,b]上有零點(diǎn),則必有f(a)•f(b)<0 | |
D. | 若函數(shù)f(x)在區(qū)間[a,b]上沒(méi)有零點(diǎn),則必有f(a)•f(b)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com