18.計算
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-9.60-(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2   (2)log225•log32$\sqrt{2}$•log59.

分析 (1)根據(jù)冪的運算性質(zhì)計算即可.
(2)根據(jù)對數(shù)的運算性質(zhì)計算即可.

解答 解:(1)原式=($\frac{3}{2}$)${\;}^{2×\frac{1}{2}}$-1-($-\frac{2}{3}$)${\;}^{3×\frac{2}{3}}$+($\frac{2}{3}$)2=$\frac{3}{2}$-1-$\frac{4}{9}$+$\frac{4}{9}$=$\frac{1}{2}$,
(2)原式=2log25×$\frac{3}{2}$log32•2log53=6

點評 本題考查了對數(shù)和冪的運算性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知在△ABC中,a,b,c是角A,B,C的對邊,向量$\overrightarrow m=(a-b,sinA+sinC)$與向量$\overrightarrow n=(a-c,sin(A+C))$共線.
(1)求角C的值;
(2)若$\overrightarrow{AC}•\overrightarrow{CB}=-27$,求$|\overrightarrow{AB}|$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知A(1,0),B(0,1)在直線mx+y+m=0的兩側(cè),則m的取值范圍是-1<m<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某科研機構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進入實驗階段.已知實驗的啟動資金為10萬元,從實驗的第一天起連續(xù)實驗,第x天的實驗需投入實驗費用為(px+280)元(x∈N*),實驗30天共投入實驗費用17700元.
(1)求p的值及平均每天耗資最少時實驗的天數(shù);
(2)現(xiàn)有某知名企業(yè)對該項實驗進行贊助,實驗x天共贊助(-qx2+50000)元(q>0).為了保證產(chǎn)品質(zhì)量,至少需進行50天實驗,若要求在平均每天實際耗資最小時結(jié)束實驗,求q的取值范圍.(實際耗資=啟動資金+試驗費用-贊助費)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合M={x|x-2>0,x∈R},N={y|y=$\sqrt{{x}^{2}+1}$,x∈R},則M∩N=( 。
A.{x|x≥1}B.{x|1≤x<2}C.{x|x>2}D.{x|x>2或x<0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,圓C:x2+y2=4,A($\sqrt{3}$,0),A1(-$\sqrt{3}$,0),點P為平面內(nèi)一動點,以PA為直徑的圓與圓C相切.
(Ⅰ)求證:|PA1|+|PA|為定值,并求出點P的軌跡方程C1;
(Ⅱ)若直線PA與曲線C1的另一交點為Q,求△POQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.假設學生在高中時數(shù)學成績和物理成績是線性相關(guān)的,若5個學生在高一下學期某次考試中數(shù)學成績x和物理成績y(總分100分)如下:
學生ABCDE
數(shù)學8075706560
物理7066686462
(1)試求這次高一數(shù)學成績和物理成績間的線性回歸方程.
(2)若小紅這次考試的數(shù)學成績是52分,你估計她的物理成績是多少分呢?供參考的數(shù)據(jù):80×70+75×66+70×68+65×64+60×62=23190;802+752+702+652+602=24750.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2x-2-x,定義域為R,函數(shù)g(x)=2x+1-22x,定義域為[-1,1].
(Ⅰ)判斷函數(shù)f(x)的奇偶性并證明;
(Ⅱ)若不等式f[g(x)]+f(-m2+2m+2)≤0對于一切x∈[-1,1]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,角A,B,C所對邊分別為a,b,c,且c=4$\sqrt{2}$,B=$\frac{π}{4}$,面積S=2,則b等于( 。
A.$\frac{\sqrt{113}}{2}$B.5C.$\sqrt{41}$D.25

查看答案和解析>>

同步練習冊答案