【題目】如圖,四邊形為梯形,平面,,
為中點.
(1)求證:平面平面;
(2)線段上是否存在一點,使平面?若存在,找出具體位置,并進行證明:若不存在,請分析說明理由.
【答案】(1)證明見解析;(2)證明見解析.
【解析】分析:(1)要證面面垂直,就要證線面垂直,也即要證線線垂直,觀察圖中,PD⊥平面ABCD,則PD與BC垂直,利用勾股定理得,從而又會有BC⊥DE,結(jié)論可證;
(2)設(shè)AC與BD交于點O,則在平面PAC內(nèi)過O作OF//PA交PC于F,F(xiàn)即為所求,故存在.
詳解:證明:(1)連結(jié)
所以 為中點
所以 又因為平面, 所以
因為 所以平面
因為平面,所以平面平面.
(2)當(dāng)點位于三分之一分點(靠近點)時, 平面
連結(jié)交于點
,所以相似于,
又因為,所以,
從而在中, ,而,所以 ,
而平面 平面 所以平面 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋時期的著名數(shù)學(xué)家秦九韶在他的著作《數(shù)學(xué)九章》中提出了秦九韶算法來計算多項式的值,在執(zhí)行如圖算法的程序框圖時,若輸入的n=5,x=2,則輸出V的值為( )
A.15
B.31
C.63
D.127
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),則下列結(jié)論正確的是( )
A.當(dāng)時,函數(shù)在上有最小值;
B.當(dāng)時,函數(shù)在上有最小值;
C.對任意的實數(shù),函數(shù)的圖象關(guān)于點對稱;
D.方程可能有三個實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F2、F1是雙曲線 =1(a>0,b>0)的上、下焦點,點F2關(guān)于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)求函數(shù)的零點和極值;
(3)若對任意,都有成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,ABC﹣A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值為 ,求三棱錐C1﹣A1CD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,已知直線: (為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點的極坐標(biāo)為,直線與曲線的交點為, ,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com